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Monitoring migration timing in remote habitats: assessing the value of
extended duration audio recording
Ellie Roark 1   and Willson Gaul 2 
1Independent Researcher, 2School of Biology and Environmental Sciences, Earth Institute, University College Dublin

ABSTRACT. Because birds are frequently detected by sound, autonomous audio recorders (called automated recording units or ARUs)
are now an established tool in addition to in-person observations for monitoring the status and trends of bird populations. ARUs have
been evaluated and applied during breeding seasons, and to monitor the nocturnal flight calls of migrating birds. However, birds behave
differently during migration than during the breeding season. Here we present a method for using ARUs to monitor land birds during
the migration period in remote habitats. We conducted in-person point counts next to continuously recording ARUs, and compared
estimates of the number of species detected and focal species relative abundance from point counts and ARUs. We used a desk-based
audio bird survey method for processing audio recordings, which does not require automated species identification algorithms. We tested
two methods of using extended duration ARU recording: surveying consecutive minutes and surveying randomly selected minutes. Desk-
based surveys using randomly selected minutes from extended duration ARU recordings performed similarly to point counts, and better
than desk-based surveys using consecutive minutes from ARU recordings. Surveying randomly selected minutes from ARUs provided
estimates of relative abundance that were strongly correlated with estimates from point counts and successfully showed the increase in
abundance associated with migration timing. Randomly selected minutes also provided estimates of the number of species present that
were comparable to estimates from point counts. Our results suggest that ARUs are an effective way to track migration timing and
intensity in remote or seasonally inaccessible habitat during spring migration. Additional testing is needed to determine the efficacy of
our methods during fall migration, and at more southerly latitudes. We recommend that desk-based surveys use randomly sampled
minutes from extended duration ARU recordings, rather than using consecutive minutes from recordings. Our methods can be immediately
applied by researchers with the skills to conduct point counts, with no additional expertise necessary in automated species identification
algorithms.

Surveillance des dates de migration dans les habitats éloignés : évaluation de l'importance des
enregistrements audio à durée prolongée
RÉSUMÉ. Les oiseaux sont fréquemment détectables par le son : c'est pourquoi l'utilisation d'enregistreurs audio autonomes (appelés
unités d'enregistrement automatisées, ou ARU) est de plus en plus courante, en plus des observations réalisées en personne pour surveiller
le statut et les tendances des populations d'oiseaux. Les ARU ont été évaluées et installées au cours des saisons de reproduction et en vue
de surveiller les cris nocturnes des oiseaux migrateurs en vol. Toutefois, le comportement des oiseaux est différent pendant la migration
et pendant la saison de reproduction. Nous présentons ici une méthode d'utilisation des ARU pour surveiller les oiseaux terrestres au
cours de la période de migration dans les habitats éloignés. Nous avons réalisé des comptes ponctuels en personne en plus des ARU qui
enregistraient en continu et comparé les estimations du nombre d'espèces détectées et de l'abondance relative des espèces focales effectuées
à partir des décomptes en personne et des ARU. Nous avons utilisé une méthode d'enquête audio de bureau pour traiter les enregistrements
audio. Cette méthode ne requiert pas d'algorithme d'identification automatique des espèces. Nous avons testé deux méthodes d'utilisation
d'enregistrements par ARU à durée prolongée : l'observation pendant plusieurs minutes consécutives et l'observation au cours de minutes
sélectionnées de manière aléatoire. Les enquêtes de bureau utilisant des minutes sélectionnées de manière aléatoire à partir des
enregistrements d'ARU de longue durée ont donné des résultats similaires aux décomptes et supérieurs aux enquêtes de bureau utilisant
des minutes consécutives d'enregistrement des ARU. L'étude de minutes à sélection aléatoire à partir des ARU a fourni des estimations
de l'abondance relative qui étaient étroitement corrélées aux estimations produites par les décomptes et a démontré l'augmentation de
l'abondance associée aux dates de migration. Les minutes sélectionnées de manière aléatoire ont également fourni des estimations du
nombre d'espèces présentes qui étaient comparables à celles obtenues par les décomptes effectués en personne. Nos résultats suggèrent
que les ARU sont un moyen efficace de suivre les dates et l'intensité de la migration dans les habitats éloignés ou inaccessibles pendant
la migration de printemps. Des tests supplémentaires sont nécessaires pour déterminer l'efficacité de nos méthodes au cours de la prochaine
migration d'automne et à des latitudes plus méridionales. Nous recommandons que les études de bureau utilisent des minutes
échantillonnées de manière aléatoire extraites des enregistrements des ARU, plutôt que des minutes d'enregistrement consécutives. Nos
méthodes peuvent être appliquées immédiatement par les chercheurs qui possèdent les compétences requises pour réaliser des décomptes,
sans disposer d'une expertise supplémentaire des algorithmes automatisés d'identification des espèces.
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INTRODUCTION
Conserving bird populations requires knowledge of bird
distribution and habitat use at all stages of their life cycle,
including during breeding, migration, and non-breeding periods
(Sherry and Holmes 1995). Monitoring birds’ habitat use during
migration is a necessary component of conservation plans for
migratory birds. Historically, researchers have primarily relied on
in-person observations including mist-netting (Peach et al. 1996)
and point counts (Ralph et al. 1995) for migration monitoring,
but because birds are frequently detected by sound, audio
recording technology offers opportunities to expand monitoring
techniques. Here we present a method for using audio recorders
to monitor the timing of migration in remote or seasonally
inaccessible habitats.  

Figuring out how to best monitor bird abundance and diversity
in remote habitat is a current challenge. The climatic variation
between winter and summer in high latitude continental regions
increases the challenges associated with accessing remote areas
during spring migration. Significant annual snow accumulation
in the winter, followed by rapid melting as temperature increases
in spring, makes unpaved roads impassable for a period of weeks
in much of northern North America, typically overlapping the
time period when migrant bird species begin to arrive in the region
in spring. For example, in the State of Michigan, in the United
States, many roads are closed to vehicles and unmaintained from
November to April (Michigan Transportation Fund Act 1981).
Developing survey monitoring protocols that can be implemented
despite poor traveling conditions is a way to fill in gaps in
knowledge of northern forest birds and birds in similarly remote
habitats.  

Autonomous recording units (ARUs) are programmable audio
recorders that can be deployed in the field for long time periods
to efficiently maximize the spatial and temporal extent of
monitoring. Passive acoustic monitoring is widely used in ecology
to monitor and study vocalizing organisms; ARUs have been
deployed to study bats (Tuneu-Corral et al. 2020), whales
(Baumgartner et al. 2019), invertebrates (Penone et al. 2013),
amphibians (Dutilleux and Curé 2020), and birds (Shonfield and
Bayne 2017). ARUs are also used to evaluate the success of
conservation programs (Shonfield and Bayne 2017). Current
challenges for implementing passive acoustic monitoring include
the availability of reference sound libraries, minimizing errors in
species identification, and determining the relationship between
acoustic index values and their associated real-world underlying
parameters (Gibb et al. 2019), as well as accounting for differences
in the sampling detection space when deploying recorders at
different sites and in different configurations (Darras et al. 2016).
ARU deployments are frequently limited by both battery life and
data storage capabilities, but rapid advances are currently being
made in deploying fully autonomous systems that are solar
powered and can automatically transmit data (Sethi et al. 2018).

Point-count surveys are the most commonly used bird monitoring
protocol for long-term study sites (Ralph et al. 1995, Rosenstock
et al. 2002), but ARUs are now viewed as a viable supplement to
point-counts, especially during the breeding season when birds
vocalize frequently (Furnas and Callas 2015, Klingbeil and Willig
2015, Shonfield and Bayne 2017, Darras et al. 2018, Darras et al.
2019). Many researchers have compared ARUs and point counts

in terms of their estimates of species richness and relative
abundance or occupancy (Haselmayer and Quinn 2000, Campbell
and Francis 2011, Tegeler et al. 2012, La and Nudds 2016),
including in temperate forest (Klingbeil and Willig 2015).
However, none of these studies (including the 23 studies reviewed
in Darras et al.’s [2018] meta-analysis) compared point counts
and ARUs during migration. Birds behave and vocalize differently
during migration than during the breeding season (Rappole and
Warner 1976, Morse 1991). Testing and refining migration-
specific monitoring techniques for ARUs is therefore necessary
to understand how data from ARUs compare to data from in-
person observations.  

ARUs are currently used during migration to record the flight
calls of nocturnally migrating species. They are deployed to track
the abundance of migrants as they move through an area and can
provide helpful information about migratory flyway locations,
migration phenology, and relative abundance of migrants (Evans
and Rosenburg 2000, Farnsworth et al. 2004, Sanders and Mennill
2014). Understanding how migrating birds use remote habitats
during the migratory period is a different challenge and requires
different methods. Determining how birds are distributed, the
relative abundance and species richness, and the timing of arrival
and departure from remote areas during migration are all
important research questions for applied conservation.  

To take advantage of the large volume of data generated by
continuously recording ARUs, researchers are actively developing
methods for automated identification of vocalizing organisms
(Salamon et al. 2016, Gibb et al. 2019, Cramer et al. 2020).
Applying automated detection algorithms requires extensive
calibration time and expertise in signal processing systems
(Priyadarshani et al. 2018b). Even with extensive algorithm
training, detection precision can still be low for some species (Ruff
et al. 2020). We present a method that can be implemented by
anyone with the skills to conduct point counts, that does not rely
on machine learning for species identification and data
processing. Because applications of ARUs surveying diurnal
habitat use during the migratory period have been under-explored
in the literature thus far, we demonstrated and assessed an
immediately applicable monitoring technique.  

We compared data from ARU surveys to in-person point count
surveys during spring migration in the northern Great Lakes
region of the United States. Our goal was to understand how
ARUs could be applied to monitor diurnal habitat use during
migration by examining whether ARUs could provide estimates
of relative abundance and number of species that are comparable
to estimates from in-person surveys. We asked the following
questions. 1) What are the differences between the number of
species detected using point counts and using ARUs? 2) Can
ARUs give estimates of relative abundance for focal species that
are correlated with estimates of relative abundance from point
counts? 3) Can randomly sampling from extended duration audio
recordings provide better estimates of focal species relative
abundance or the number of species detected than consecutive
minutes of audio recording?

METHODS
We conducted in-person point counts alongside continuously
recording ARUs on the southern shore of Lake Superior during
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two months at the start of spring migration. We compared both
raw data and model-based estimates of the number of species
detected and focal species relative abundance from point counts
and ARUs. Our sampling scheme targeted diurnal land birds
using the peninsular habitat during the migratory period. The
sampled community consisted largely of passerine species that
breed in forested habitat in North America, including Canada
and Northern Michigan.

Study site
We conducted field work in a 2.7 km² area on the Point Abbaye
peninsula in Baraga County, Michigan, USA (Fig. 1). Surveys
took place from 2 April to 22 May 2019 and were conducted daily
unless prevented by weather conditions. Field work was designed
to coincide with the arrival and peak relative abundance of early-
season migrating birds. Point Abbaye juts into the southern part
of Lake Superior and comprises the western border of Keweenaw
Bay. Habitat included forested wetland, upland hardwood, and
hardwood forest disturbed by recent logging activity. We selected
survey sites randomly across the study area using the R
programming language and the rgdal, geosphere, rgeos, sp,
maptools, and spatstat packages (Pebesma and Bivand 2005,
Bivand et al. 2013, Baddeley et al. 2015, Bivand et al. 2018, Bivand
and Rundel 2018, Bivand and Lewin-Koh 2019, Hijmans 2019,
R Core Team 2020). We conducted a pilot study in 2018 to test
our protocols and evaluate the accessibility of our randomly
selected survey locations. See Appendix 1 for details about pilot
year surveys, and survey site and date selection.

Fig. 1. Study area on the Point Abbaye Peninsula in Baraga
County, Michigan, USA. Points denote survey locations visited
during April and May of 2019. The survey area covers 2.7 km².
White lines on the left panel show unploughed four wheel drive
roads which are impassible from early April to early May each
year. Map data ©2020 Google.

Automated recording units
Birds were recorded using three SWIFT bioacoustic recorder
rugged units (Cornell Lab of Ornithology, Ithaca, NY, USA) and
one AudioMoth bioacoustic recorder that was housed in a thin
plastic bag for light weather proofing (Hill et al. 2018, Open
Acoustic Devices, Southampton, UK). SWIFT units used a built-
in PUI Audio brand omni-directional microphone. The
AudioMoth unit used an analog microelectro-mechanical systems
(MEMS) microphone. We refer to both the SWIFT and
AudioMoth units as “automated recording units” (ARUs). ARUs
recorded at a sampling rate of 48 kHz and saved recordings as
uncompressed .WAV files. The microphone gain was set to “mid-
high” for the AudioMoth unit and 35 dB for the SWIFT units.
The signal to noise ratio reported by device manufacturers is

approximately 58 dB for the SWIFT units and approximately 44
dB for the AudioMoth unit.

Field survey methods
ARUs recorded continuously for five hours each day, beginning
within 10 minutes of local sunrise time (United States Naval
Observatory 2016). The field technician manually re-programmed
recorders approximately once per week to adjust for changing
sunrise times. ARUs were attached to trees less than 0.6 m in
diameter, and were placed 1.5–2 m above the ground (Darras et
al. 2018). The SWIFT omni-directional microphones were always
oriented downward to prevent precipitation landing directly on
the microphone. After the five hour recording period ended each
day, ARUs were moved to new locations for the next day’s samples,
thereby rotating the ARU and point count samples through all
18 survey locations approximately every five days. The sampling
order for the points was chosen randomly, and ARUs were
deployed to the randomly selected point locations each day.  

Point counts were conducted daily next to each ARU during the
five hour recording period. Point counts involved recording all
birds seen and heard at an unlimited distance during a stationary,
10-minute count. The technician noted wind speed, precipitation
level, and non-bird noise level, which included both
anthropogenic noise like boats and planes, as well as frogs and
other taxa. We did not survey in high wind or heavy precipitation.
See Appendix 1 for detailed point count protocols.

Desk-based audio surveys
We conducted desk-based audio bird surveys by listening to ARU
recordings played through headphones on a laptop computer in
the lab after the end of the field season. We tested three types of
desk-based audio surveys: 1) we listened to a recording of the 10
consecutive minutes during which the in-person point count was
conducted; 2) we listened to 22 minutes from each recorder,
selected randomly from the five hour recording duration; 3) we
sampled a subset of 10 of the 22 random minutes (without
listening to those minutes again). Our goal was to compare each
of these desk-based ARU survey methods to in-person point
count observations.  

For each audio file, the desk-based survey technician noted the
identity of each bird species that vocalized, the type of
vocalization, and the 30-second time intervals in which each
species vocalized. We discarded randomly sampled minutes that
contained a human voice. While listening, we viewed
spectrograms of the recording in Audacity (Audacity Team 2019).
Detailed protocols for completing desk-based audio surveys can
be found in Appendix 1, and a completed data sheet from a desk-
based survey is shown in Fig. A1.6.

Indices for observed number of species and
relative abundance
We summed the number of unique species detected (S) separately
using each survey type: 10-minute in-person point counts (Sp), 10
consecutive-minute ARU surveys (S10C), 10 random-minute ARU
surveys (S10R), and 22 random-minute ARU surveys (S22R) (Table
1). We calculated a value of S for each individual survey on each
day, resulting in three or four values of S for each survey type on
each day.  
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Table 1. Indices of relative abundance and species richness for both in-person point count observations, and desk-based listening counts
using audio data from Automated Recording Units (ARUs).
 

Index Abbreviation Survey type Temporal continuity Measured Value

A
p

Point count Consecutive Relative abundance measured as the mean number of
observed individuals per 10 minute point count per
day

A
n
C Automated Recording Unit Consecutive Relative abundance measured as the proportion of 30

second intervals with a vocalization calculated by
surveying n minutes in sections of 10 consecutive
minutes

A
n
R Automated Recording Unit Random Relative abundance measured as the proportion of 30

second intervals with a vocalization calculated by
surveying n minutes in sections of 1 minute chosen
randomly from the full five hour survey window.

S
p

Point count Consecutive Number of species detected during a 10 minute in
person point count

S
n
C Automated Recording Unit Consecutive Number of species detected during n consecutive

minutes, in sections of 10 consecutive minutes
S

n
R Automated Recording Unit Random Number of species detected during n minutes, chosen

randomly from the full five hour survey window

We created an index of daily relative abundance (A) for individual
species using each survey type (Table 1). Our relative abundance
indices were: the mean observed number of individuals per point
count (Ap); the proportion of 30-second intervals with a
vocalization calculated by surveying n minutes in sections of 10
consecutive minutes (AnC); the proportion of 30-second intervals
with a vocalization calculated by surveying n minutes in sections
of one minute chosen randomly from the five hour survey window
(AnR). To reduce the number of zero relative abundance counts
in our data, we calculated indices by grouping all surveys of each
type for each day, so there was a single value for each relative
abundance index on each day. Abundance index abbreviations
(Table 1) indicate the number of minutes surveyed per day. For
example, three samples of 10 consecutive minutes per day were
aggregated for an index of A30C, indicating that 30 minutes total
were sampled for each day.  

Note that while April 16th and 17th data appear on plots and in
results, ARU malfunctions on those dates made the number of
sampled minutes, n, different for those two dates for some of our
relative abundance indices. See Appendix 1 for detailed discussion
of sample size on these dates. Because these dates coincided with
an important arrival period of migrants into the study area, we
did not exclude them from our analyses.

Statistical analysis
Observed number of species  

To determine whether the survey type (Sp, S10C, S10R, S22R)
significantly influenced the number of species detected, we
modeled the number of species detected using a generalized linear
mixed model (GLMM) with a Poisson error distribution and log
link function, using the lme4 package in R (Bates et al. 2015, R
Core Team 2020). Our fixed effects were survey type, first and
second degree terms for day of year, wind, rain, noise, and
interactions for the day of year terms and survey type, and for
rain and survey type. We also used day of year as a random effect;
we expected that the number of species detected by all surveys on
each day would be strongly correlated, regardless of survey

location or survey type. More information about our GLMM can
be found in Appendix 1.  

Relative abundance   

We compared relative abundance estimates from Ap to each of
the three desk-based audio survey types (A30C, A30R, A66R) for all
species that were detected at least twice using each survey type.
To illustrate these analyses, we present detailed results for two
example species, Regulus satrapa (Golden-crowned Kinglet) and
Troglodytes hiemalis (Winter Wren). Winter Wrens were abundant
in the survey area, and vocalized frequently and loudly during
early spring, representing the “best case” scenario for detectability
on ARU recordings. Golden-crowned Kinglets were abundant in
the survey area, but vocalized quietly (though regularly) during
early spring, and so represent a greater challenge for detection
using ARUs.  

For each relative abundance model, we fitted boosted regression
trees (BRTs) (Friedman 2001, Elith et al. 2008) using 200 iterations
of five-fold temporal block cross validation (Fig. A1.3, Roberts
et al. 2017). This resulted in a total of 1000 BRT fits per relative
abundance model. We generated predicted relative abundances
by averaging predictions from the 1000 fits of each model. The
predictor variables in our model were day of year (continuous)
and wind speed (categorical with three levels representing
Beaufort forces of 0-1, 2, or 3 or higher [Beaufort 1805]). We fit
BRTs with the gbm package in R (Greenwell et al. 2019, R Core
Team 2020). Details of BRTs, including model tuning and control
of overfitting are in Appendix 1, and Figs. A1.4 and A1.5.  

We assessed whether the observed values from the three desk-
based audio survey indices (A30C, A30R, A66R) were correlated with
the observed values from Ap, and whether the predicted values
from the models trained with desk-based audio survey indices
were correlated with the predicted values from models trained
with Ap for all focal species using Spearman’s rank correlation
coefficient. To assess whether the correlation coefficients for all
species varied based on which abundance index pair was used and
on whether coefficients were calculated from observed or
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Table 2. Results of a generalized linear mixed model of the number of species detected as a
function of day of year, count type, and environmental condition covariates. Each variable
included in the model is shown, along with the coefficient point estimate, 95% confidence
interval, and significance level. *denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001
 
Variable Coefficient

estimate
95% CI

lower
bound

95% CI
upper

bound

P-value

Survey type (S
10C

) -0.6146 -0.7824 -0.4467 <0.0001 ***
Survey type (S

10R
) -0.065 -0.213 0.0829 0.3888

Survey type (S
22R

) 0.3056 0.1702 0.441 <0.0001 ***
Wind (2) -0.0301 -0.135 0.0748 0.574
Wind (3+) -0.1007 -0.2644 0.0629 0.2277
Rain (Wet) -0.1984 -0.4624 0.0657 0.1409
Noise (1) 0.1552 0.0595 0.251 0.0015 **
Noise (>2) 0.0544 -0.147 0.2557 0.5967
Day of year 0.4346 0.305 0.5641 <0.0001 ***
Day of year2 -0.1159 -0.2496 0.0178 0.0892
Survey type (S

10C
) x Rain (Wet) -0.0163 -0.3944 0.3617 0.9325

Survey type (S
10R

) x Rain (Wet) 0.1861 -0.1374 0.5096 0.2595
Survey type (S

22R
) x Rain (Wet) 0.2288 -0.0677 0.5252 0.1304

Survey type (S
10C

) x Day of Year 0.0153 -0.1191 0.1498 0.823
Survey type (S

10R
) x Day of Year 0.0595 -0.0659 0.1849 0.3525

Survey type (S
22R

) x Day of Year -0.0709 -0.1808 0.0389 0.2058
Survey type (S

10C
 ) x Day of year2 0.086 -0.048 0.2199 0.2083

Survey type (S
10R

) x Day of year2 -0.0583 -0.1825 0.0659 0.3575
Survey type (S

22R
) x Day of year2 -0.0148 -0.125 0.0953 0.7917

predicted values, we fit a linear mixed model. The response
variable was correlation coefficient, the fixed effects were index
pair (Ap and A30C, Ap and A30R, or Ap and A66R), value type
(observed or predicted), and their interaction (index pair x value
type), and the random effect was species. We fit the model using
the nlme package in R (Pinheiro et al. 2019, R Core Team 2020).

RESULTS
Between 2 April and 22 May 2019, we were able to survey on 37
days. During that time, we conducted 137 in-person point counts.
We recorded 130 simultaneous 10-minute periods with ARUs
(when a human observer was also present conducting a point
count) and 124 periods of 22 randomly selected minutes from
each morning (five hours of recording). All four audio recorders
experienced occasional malfunctions; more details about these
malfunctions can be found in Appendix 1. A complete list of the
species detected by each survey method is in Table A1.1.

Observed number of species
A Chi-square ANOVA comparing our full model to a null model
with survey type removed showed that survey type (the S-index
used) had a significant effect on the number of species detected
(χ2

9, 21 =247, p < 0.0001). We detected a similar number of species
using S10R as we did using Sp (Fig. 2; Table 2; change in the log of
the number of species detected = -0.065, 95% CI [-0.2; 0.08], p =
0.3888). Using S22R, we detected significantly more species than
by using Sp (Fig. 2; Table 2; change in the log of the number of
species detected = 0.305, 95% CI [0.17; 0.44], p < 0.0001). We
detected fewer species using S10C than using Sp (Fig. 2; Table 2;
change in the log of the number of species detected = -0.614, 95%
CI [-0.78; -0.44], p < 0.0001). Listening to randomly selected rather
than consecutive minutes eliminated the gap in number of species
detected between 10-minute point counts and 10-minute ARU

surveys (Fig. 2). Day of year had a significant effect on the number
of species detected (Table 2), with more species expected later in
the migration season (Fig. 2).

Fig. 2. The number of bird species detected by in-person point
counts and automated recording units (ARUs) during the
spring migration period on the Point Abbaye peninsula,
Michigan, USA in 2019. Points show observed number of
species detected, lines show predictions from a generalized
linear mixed model, holding weather variables constant. See
Table 1 for a description of the species richness index
abbreviations. Listening to 10 random minutes of data from an
ARU (S10R) allowed for detection of the same number of
species as a 10 consecutive minute in-person point count (Sp).
Increasing survey effort to 22 random minutes of ARU data
(S22R) increased the number of species detected to above the
number of species detected by in-person point counts.
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Fig. 3. Predicted and observed relative abundance of (a) through (d) Winter Wren, and (e) through (h) Golden-crowned
Kinglet, in April and May of 2019 on the Point Abbaye peninsula. Points show observed values for each abundance
index, while lines show the mean predicted values from 200 five-fold cross validated boosted regression tree models.
The vertical axes show the daily abundance index value (see Table 1) calculated from: (a) and (e) three 10-minute in
person point counts, (b) and (f) three samples of 10 consecutive minutes of audio recordings from automated recording
units (ARUs), (c) and (g) three samples of 10 randomly selected minutes of audio recordings from ARUs, (d) and (h)
three samples of 22 randomly selected minutes of audio recordings from ARUs.

Chi-square ANOVA showed that the overall effect of wind was
not significant (χ2

19, 21 =1.44, p = 0.48) nor was the overall effect
of precipitation (χ2

18, 21 = 3.45, p = 0.32). The overall effect of
noise was significant (χ2

19, 21 = 10.3, p = 0.005). The interaction
between survey type and day of year was not significant (Table
2), providing no evidence of a difference in the effect of survey
method on the observed number of species over the course of the
survey season.

Relative abundance models
BRT models of relative abundance over time differed in how well
they showed the initial period of absence, and the increase in
relative abundance corresponding with the arrival of migrant
birds in our study area, depending on the survey method used
(Fig. 3, Fig. A2.1). The general pattern of initial absence followed
by arrival of migrants can be seen in both the raw data and the
model predictions of relative abundance for Ap, A30R and A66R for
Winter Wrens (Fig. 3 a, c, and d) and for Ap and A66R for Golden-

crowned Kinglets (Fig. 3 e, and h). The same general pattern is
visible for Ap and A66R for at least 12 additional species (Fig. A2.1).
For most species, including our two example species, the observed
relative abundance indices from ARU surveys were positively
correlated with the observed relative abundance index from point
counts (Fig. 4, Fig. 5, Table A2.1), indicating that the relative
abundance proxies we calculated using ARUs are comparable to
relative abundance estimates from in-person observations.  

For all species, correlations for predicted values of Ap and the
three desk-based survey methods (A30C, A30R, A66R) were
generally higher than correlations of the observed index values
(Fig. 6, Table 3, Table A2.1). For correlations calculated with
observed abundance index values, Ap appeared to be most
strongly correlated with A30C; however, correlations calculated
with predicted abundance index values were stronger between Ap 
and the two random-minute indices (A30R and A66R) (Fig. 6, Table
3). The strongest median correlation value was between predicted
values of Ap and A30R, though predicted values of Ap and A66R
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Fig. 4. Correlation between daily observed values of
relative abundance indices (Table 1) for Winter Wren. See
Table A2.1 for Spearman’s correlation coefficients.
Abundance indices for ARUs (the proportion of 30-
second intervals with a vocalization) are correlated with
the abundance index from point counts (mean number of
individuals observed per count per day). Note that axis
scales vary by abundance index; absolute values are less
important here than the relationship between
observations. Photo: “Winter Wren” by ilouque, used
under license CC BY 2.0. Cropped from original.

Fig. 5. Correlation between daily observed values of relative
abundance indices (Table 1) for Golden-crowned Kinglet. See
Table A2.1 for Spearman’s correlation coefficients. Abundance
indices for ARUs (the proportion of 30-second intervals with a
vocalization) are correlated with the abundance index from
point counts (mean number of individuals observed per count
per day). Note that axis scales vary by abundance index;
absolute values are less important here than the relationship
between observations. Photo: “Golden-crowned Kinglet” by
Laura Gooch, used under license CC BY-NC-SA 2.0. Cropped
from original.

Fig. 6. Correlations between relative abundance index values for
all species detected at least twice with both point counts and
ARUs (Ap, A30C: n= 25 species; Ap, A30R: n = 28 species; Ap,
A66R: n = 30 species; Table A2.1). Boxes show the middle 50%
of the data, and the horizontal line shows the median value in
each box (Table 3). Correlations between predicted index values
(right) were higher than correlations between observed index
values (left).

Table 3. Median of Spearman's rank correlation coefficient values
for each combination of abundance indices for all species that
were detected at least twice by both methods (Ap, A30C: n = 25
species; Ap, A30R; n = 28 species; Ap, A66R: n = 30 species).
 
Correlation

Pair
Correlation of Observed

Values
Correlation of Predicted

Values

Median Median Absolute
Deviation

Median Median Absolute
Deviation

A
p
, A

30C
0.636 0.208 0.644 0.27

A
p
, A

30R
0.417 0.331 0.761 0.178

A
p
, A

66R
0.497 0.351 0.731 0.235

were only slightly less correlated (Fig. 6, Table 3). The strong
correlation between predicted values of the relative abundance
indices indicates that our models found the same underlying signal
regardless of whether training data were from ARUs or point
counts.  

The interaction between value type (observed or predicted) and
index pair (Ap and A30C, Ap and A30R, or Ap and A66R) was
significant according to a likelihood ratio test comparing linear
mixed models with and without the interaction term (L = 7.85,
df = 1, p = 0.01). This indicates that the correlation values
depended on the value type and indices used.
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DISCUSSION
Our results showed that ARUs recording for an extended duration
can be as effective as in-person point counts for monitoring vocal
migrating land birds in high latitude remote habitats during spring
migration. The number of species detected by randomly sampling
minutes from ARU recordings was similar to, or higher than, the
number of species detected by point counts. Relative abundance
models trained with ARU data showed the increase in relative
abundance indicating the arrival of migrants at the study site,
suggesting that ARUs can be used to track migration phenology in
remote habitats for vocal species.

Sampling random rather than consecutive
minutes from ARU recordings
Data from randomly selected minutes of ARU recordings detected
more species and produced modeled relative abundance estimates
that better showed the expected seasonal pattern of migration
timing than data from consecutive minutes of ARU recordings (Fig.
2, Fig. 3, Fig. A2.1). There are two likely explanations for this. First,
randomly selected minutes are less temporally auto-correlated than
consecutive minutes. For example, during a 10-minute in-person
point count, little new information is gained during the seventh
minute of the survey compared to what was collected during the
sixth minute of the survey; a Winter Wren singing near the end of
the sixth minute of a point count survey will likely still be singing
in the beginning of the seventh minute. By selecting minutes
randomly from across the five-hour survey window, the temporal
correlation between each successive minute that is analyzed is
minimized. Second, during the migration season, birds may move
more within the study area than they would during the breeding
season, when they have established a territory. The community of
birds within the immediate detection radius of an observer (either
a person or a recording ARU) may therefore change over the course
of five hours. Wimmer et al. (2013) found that randomly selected
minutes from extended duration recording provided better
estimates of species richness than consecutive minute in-person
surveys during the breeding season. Our findings lend support to
the conclusion that using randomly selected minutes provides a
more complete sample of the birds using a spatial location over the
entire course of the survey window than consecutively sampled
minutes.  

For in-person point counts, the time taken to travel to a survey site
takes up a major portion of the total time invested, so site visits are
typically limited to once per day. With ARUs, no such constraints
exist; it is possible to do multiple short-duration surveys from many
locations over the course of one day without additional travel and
field work logistics. We recommend that studies using ARUs on
migration should randomly sample recordings of short periods of
time (e.g., one-minute recordings) from a defined survey window
relevant to the study question (e.g., the five hours following sunrise
for passerines in temperate forest or twilight to dawn for crepuscular
and nocturnal species). Our study focused on migration, but we
recommend that studies using ARUs to monitor birds during
wintering or breeding seasons (e.g., Wimmer et al. 2013) also
consider using randomly selected minutes.

Effects of wind, rain, and noise on ARU surveys
We did not detect an effect of either wind or rain in our model of
the number of species detected. However, because we controlled

for adverse weather conditions during our field surveys by not
deploying ARUs on rainy or windy days, the number of high wind
values in our data was low, as was the number of rainy survey
days. We noted anecdotally that the wind values recorded in
person for a survey day did not always correlate with the amount
of wind heard while conducting our desk-based audio surveys;
we speculate that wind direction in relation to the microphone
may make a difference in how much wind is actually picked up
by the ARU. Given that wind and rain have an effect on the
detectability of birds in the study system (Ralph et al. 1995), they
remain important predictors to include, despite not appearing
significant in our model.  

Interpreting the significance of the noise variable is challenging,
because we used the variable to describe all non-avian noise in the
environment, which could include waves, airplanes, and frogs. We
suspect that the overall significance of the noise variable may be
due to frogs. Future studies may want to consider distinguishing
between other vocalizing taxa and surrounding environmental
noise, as ARUs can be used to simultaneously sample multiple
taxa (e.g., crickets and bats; Newson et al. 2017). Background
noise in ARU recordings can impede the ability of human listeners
or automatic identification algorithms to identify bird calls and
songs (Priyadarshani et al. 2018b). We addressed background
noise in ARU recordings both in the experimental design and in
statistical analysis: we did not deploy ARUs during high winds
or during heavy precipitation, and we included wind speed and
noise as "nuisance" covariates in statistical models. However, most
uses of ARUs will deploy ARUs for much longer periods of time
(weeks or months), and will not have the option of avoiding
recording during strong wind and precipitation. Most uses of
ARUs will therefore require an audio cleaning step to identify and
deal with sections of recordings with high amounts of
background noise (Priyadarshani et al. 2016, Lostanlen et al.
2019).

Estimating relative abundance despite
imperfect detection of birds
Estimates of abundance are more useful than estimates of
occurrence for prioritizing conservation resources at dynamic
temporal scales, such as during migration (Johnston et al. 2015).
ARUs do not solve the problem of how to estimate true abundance
during migration. We accounted for variation in detectability by
controlling for observer effort and weather variables, but we
recognize that imperfect detection, and the possibility of vocal
behavior changing over time, means that the number of
individuals detected is not necessarily a good estimate of the
number of individuals present (MacKenzie and Kendall 2002).
Hierarchical models that account for imperfect detection
(MacKenzie et al. 2002, Kéry and Royle 2016) rely on assumptions
about population closure that may be badly violated during
migration, when birds are only present in stopover habitat for
short periods of time. The period in which we can reasonably
assume population closure for our study area during migration
may be as short as several hours or as long as several days,
depending on weather conditions. Therefore disentangling true
occupancy or abundance from detectability is difficult, whether
using traditional in-person survey methods or ARUs. The current
standard in studies that examine abundance during the migration
period is to account for detectability by controlling for effort and
weather (Johnston et al. 2015).  
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It is possible that individual birds’ vocalizations may increase over
the spring migration period, as birds prepare for the breeding
season. Changes in vocalization behavior over the migration
season could confound our estimates of relative abundance. One
possible avenue for dealing with these issues is the method
proposed by Metcalf  et al. (2019) which used ARU data and
dynamic occupancy models that allowed detectability and
occupancy to vary over short timescales relevant to migration.
We believe increases in relative abundance shown by our models
reflect real increases in relative abundance associated with the
arrival of these species in the study area, demonstrated by the
abrupt arrival of focal species apparent in both raw data and
model predictions (Fig. 3, Fig. A2.1) and by the moderate to
strong correlations between results using Ap (relative abundance
from point counts) and results using our ARU relative abundance
indices for many focal species. ARUs can therefore provide
valuable information about migration phenology, comparable to
the information obtained by in-person surveys, even if  estimating
true abundance remains challenging.

Desk-based ARU surveys are generalizable to
many species
The pattern of absence followed by arrival is visible for both Ap 
and A66R (and often A30R) for many species in addition to our
example species (Fig. A2.1). This suggests that our methods are
generalizable to many vocal birds in this region. The model
predictions from random-minute ARU indices were more
strongly correlated with Ap than were predictions from the
consecutive minute ARU index (Fig. 6, Table 3). In contrast, raw
observed values from A30C were more strongly correlated with
observed values from Ap than were the random-minute indices
(A30R and A66R). However, the goal of the abundance models was
to produce similar summary conclusions from the data (i.e.,
similar out of sample predictions of relative abundance), not to
reproduce the raw data values. Therefore, the random-minute
ARU indices provided better estimates of relative abundance than
did the consecutive minute ARU index.  

Using correlation between point count and ARU relative
abundance indices is an imperfect measure of ARU index
performance. It works well when there is a strong directional trend
in relative abundance, as we see with arriving migrant species.
However, some vocal resident species (e.g., Common Raven,
CORA, Fig. A2.1) showed no directional trend in relative
abundance over time. Though the BRT models successfully
showed the same overall trends for Ap, A30R, and A66R, the
correlation coefficients were low (Table A2.1). Alternative
measures for comparing models might more accurately describe
how ARU surveys compare to point counts for all species, not
only those that show strong directional trends in relative
abundance.

Adjusting ARU methods for different study
systems
Future studies might consider increasing ARU survey effort
beyond our maximum of 66 randomly selected minutes per day.
We were able to model relative abundance for more species with 
A66R (n = 30) than with A30R (n = 28). The rate at which we detected
new species when sampling additional random minutes slowed
notably with less than 22 minutes of sampling, suggesting that

few new species would be detected by additional sampling, except
in early April (Fig. A1.7). The optimum number of minutes to
sample will likely depend on the study system and season.  

We limited our survey window to the first five hours after sunrise
in order to maintain similarity to common point count protocols.
We limited our survey effort to 66 random minutes per day because
we wanted to keep the technician work load for desk-based audio
surveys similar to the time invested for point counts; when
researchers do not have to travel between survey locations they
may invest a higher percentage of their time listening to
recordings. Future studies need not be bound to these constraints.
ARUs can be used more flexibly when researchers are not
concerned with direct comparison between in-person and ARU
survey methods. Similarly, while we placed ARUs at about head-
height because we were making direct comparisons to point
counts, one could choose an optimal height to mount ARUs based
on either behavioral characteristics of focal species or
consideration of sound transmission and attenuation
(Priyadarshani et al. 2018a). For example, researchers wishing to
monitor canopy-dwelling forest birds may wish to place ARUs
higher in order to better target those species.

Are ARUs useful across the entire migration
route?
Our study site and survey timing represent the northern end of
the spring migratory journey, and therefore may represent a best-
case scenario for ARU use during spring migration. Indeed, more
southerly sites and the fall migratory period may present less
favorable conditions for monitoring with ARUs, because many
species may not vocalize as reliably when they are farther from
their breeding grounds or moving away from their breeding
grounds. We were unable to differentiate between individual birds
using our study site as a stopover location before moving on to
more northerly breeding grounds and those that would eventually
establish a breeding territory locally. Future studies could evaluate
the applicability of ARUs in migration stopover specifically by
replicating this study farther south, where many of the species we
detected will stopover but not breed. Further research is necessary
to determine how far south these methods are applicable during
spring, and whether they will work during fall migration.  

Future studies using ARUs to monitor bird migration may wish
to take advantage of ARUs’ unique ability to scale research in
ways that may be infeasible or prohibitively expensive for in-
person field work. ARUs can increase the amount of data
collected without increasing the costs associated with technician-
hours in the field (Williams et al. 2018). For example, ARUs could
be deployed in dense, small-scale networks to examine micro-
habitat use in stopover regions. Alternatively, they could be
deployed on a latitudinal gradient covering hundreds or
thousands of kilometers to examine how vocal behavior changes
over the spring migration period as birds approach their breeding
grounds.

Conclusion
Applying the methods described here can facilitate an increase in
survey effort in difficult-to-access habitats in high latitude forests
during migration. Temporal variation in accessibility in these
habitats is dramatic, as unpaved roads typically turn from snow
to slush to impassable mud before hardening into reliably dry

http://www.ace-eco.org/vol16/iss1/art21/


Avian Conservation and Ecology 16(1): 21
http://www.ace-eco.org/vol16/iss1/art21/

surfaces in early summer. ARUs can eliminate many of the
restrictive logistics and safety concerns for researchers interested
in monitoring spring migration. Our method of using desk-based
surveys of randomly selected minutes from ARUs can be used by
any researcher with the skills to conduct point counts. Researchers
can set up ARUs during winter conditions when access to study
sites over snow is relatively easy (e.g., using snowmobiles, skis or
snowshoes), and revisit to collect the audio data once conditions
have stabilized in late spring. Our methods for using ARU data
to model relative abundance of focal species and the number of
species present during migration can be immediately applied to
increase monitoring effort in logistically difficult regions.

Responses to this article can be read online at: 
https://www.ace-eco.org/issues/responses.php/1885
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APPENDIX 1

Supplementary methods and results

Pilot year surveys; site selection

We selected survey sites randomly across the study area with the criteria that points were at least 

100 m away from the shoreline, and at least 300 m apart, to ensure ARUs recorded non-overlapping 

areas (Klingbeil and Willig 2015). During the pilot year of surveys in 2018, nineteen points were 

initially selected and tested (eighteen chosen randomly as previously mentioned, and one point selected

by hand near the tip of the peninsula). Three of those initial nineteen points were dropped for the 2019 

season, due to difficult access, posted private property signs, and smaller effective survey area (because

of proximity to water) relative to the other points. For the 2019 field season, the survey area was 

expanded from 2.5 km2  to 2.7 km2  to include an adjacent Keweenaw Land Trust property, and two 

additional survey points were added. 

Date selection

We selected survey dates by reviewing historic observations for four early season migrant 

species: Golden-crowned Kinglet (Regulus satrapa), Northern Flicker (Colaptes auratus), Winter Wren

(Troglodytes hiemalis), and Hermit Thrush (Catharus guttatis). For each of these species, we 

downloaded all Michigan eBird records from 1970 to 2018 (eBird Basic Dataset 2018), and used the 

number of daily detections (without attempting to correct for variable survey effort or detectability) to 

select field work dates that would give us a good chance of surveying through the early migration 

period (i.e. starting before any individuals of the focal species were present and continuing through a 

period of high focal species abundance). 
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To determine our survey period for the 2019 field season, we subset eBird data for the region to 

observations made between 1 January and approximately 8 July (day of year 190), in the four counties 

nearest our survey area (Baraga, Keweenaw, Houghton, Marquette). We plotted day of year by the 

number of observations per species (as a proxy for abundance) to determine both the day of arrival at 

the study area and the approximate peak of migration for each species. We selected 1st April (day of 

year 91) as the start date for surveys because in eBird records from previous years, 90% of Golden-

crowned Kinglet observations and 99% of records for the other three target species occurred after this 

date.  We wanted to balance the benefit of being early enough to catch the first migrants against the 

cost of potentially spending weeks in a remote field location without our focal species present. Plots of 

cumulative observations by day of year showed that surveying through day of year 141 (May 22) 

would allow us to catch the peak in the daily number of observations reported to eBird for each of our 

target species. This survey period did not encompass the entirety of spring migration for all migrant 

species in the region, but was designed to capture the peak of abundance during migration for our focal 

migrant species. 

Point count protocols

The field technician announced aloud the beginning and end of each point count, as well as the 

date, time, location name, and geographic coordinates, so that this information could be recorded on the

ARU, as well as on the technician’s data sheet. Each species observed was noted on a data sheet, 

including the number of individuals seen, the bearing of the first individual or group detected (relative 

to the direction the observer was facing), the detection method (call, song, woodpecker drum or visual),

the distance from the observer (in three distance bands of 0–25 m, 26–50 m, or 50+ m), and the minute 
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of the survey in which the species was first detected (0–9). The observer also noted cloud cover (0–

33%, 34–66%, 67–100%), precipitation (Dry, Fog/Haze, Drizzle, Rain/Snow), Beaufort wind scale 

rating (0-5) (Beaufort 1805), and non-bird noise level for each point count (0–4). We did not survey if 

the wind was greater than force 5, or in heavy, continuous precipitation. 

Desk-based survey protocols

No more than five hours of desk-based audio surveys were conducted in a single day, and all 

audio recordings were listened to at full speed. The technician was allowed a maximum of 15 minutes 

to listen to each 10 minute recording, during which time they could pause, rewind or replay the audio 

file, and could look up and play songs or calls from any external resource they felt may be helpful, 

excluding using any kind of automated identification program. Because of the difficulty of deciding 

what constitutes a single “vocalization” from species with different songs and calls, we did not attempt 

to count the number of vocalizations. While conducting desk-based audio surveys, we viewed 

spectrograms of the recording in Audacity (Audacity Team 2019). Spectrograms were viewed in gray 

scale, with a minimum frequency of 0 kHz and a maximum frequency of 15 kHz. The gain (brightness)

of the spectrogram was 20 dB, while the range (contrast) was 80 dB. Frequency gain was 0 dB/dec.  

Window size was 256, with window type Hanning and a zero padding factor of 1. 

To process the data from the 10 consecutive minute counts, we clipped the audio recording of 

each 10 minute point count from its larger audio file, excluding voice announcements about the 

location, date and time of recording and including only the “begin point count” and “end point count” 

announcements from the survey technician. Because the field survey technician also conducted the 

desk-based audio bird surveys, the second author anonymized the audio recorder file names so that the 
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survey technician could not see or hear the dates and locations of the audio recordings. This reduced 

the possibility that memories of particular days or locations would influence the data collected during 

the desk-based audio survey. In the anonymized file names we included an indicator of the two week 

period in which the point count took place (“early” or “late” in April or May) because information 

about season is used by bird observers to inform their mental list of “possible” species, and this 

information would be available to a technician conducting desk-based audio bird surveys in practical 

applications. 

In order to ensure that the technician’s desk-based audio survey species identifications were 

reproducible, we duplicated 20% of the 10 consecutive minute recordings, and assigned new 

anonymous names to the duplicated recordings, so that the technician listened to that data twice. After 

data entry and de-anonymization, we compared the species detected in each duplicated recording.

The desk-based survey process used for listening to 24 random minutes was similar to the 

process used for 10 consecutive minute recordings. Selection of the 24 random minutes was done in R 

using the ‘warbleR’ package and work flow (Araya-Salas and Smith-Vidaurre 2017, R Core Team 

2020). We wanted to analyze a minimum of 20 random minutes without anthropogenic disturbance, so 

we selected and clipped 24 minute-long segments from each day’s audio for each recorder. We 

subsequently discarded any clip that contained a human voice, but did not discard clips containing 

other possibly anthropogenic noise (e.g. footsteps), because we did not have a clear way to distinguish 

between human and wild animal sounds. We also did not control for distant anthropogenic noises such 

as vehicles and planes. We created a new sample of 24 random minutes to select from each ARU on 

each survey day, so that we did not select the same minutes from each day or ARU. We only selected 

24 random minutes from an ARU on days when the unit recorded the full five-hour survey window.  
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We listened to randomly selected minutes using the procedures outlined above for the 10 consecutive 

minute desk-based audio surveys, but allowing for a maximum of 50 minutes to listen to each set of 24 

random minutes. This allowed for approximately the same effective listening time for the audio files 

(50% more than the length of the original file), but included extra time for file management (opening 

and closing the audio files in Audacity). After discarding minutes that contained a human voice, we had

a sample of 22 random minutes from each ARU on each survey day.

Sample size on April 16th and 17th

The number of surveys per day over the course of the season varied based on local conditions. 

We deployed at least three ARUs every day, and deployed a fourth ARU on days when insufficient 

weatherproofing was not likely to interfere with recording efforts. We considered all survey days with 

at least three in person point counts, and five hour recording windows from at least three ARUs, a 

“complete” survey day. On two days (April 16th and 17th) we failed to capture a complete survey day 

due to ARU SWIFT03 malfunctioning. On April 16th, we also were unable to conduct three in-person 

point counts, and conducted only two counts, one alongside the functionally recording SWIFT01, and 

one next to the malfunctioning SWIFT03. SWIFT02 successfully recorded the full five hour survey 

window on April 16th, but no point count was conducted there. 

Because these dates coincided with an important arrival period of migrants into the study area, 

we did not drop them from our analyses. Because we modeled species richness per count rather than 

per day, our species richness models were unaffected by the anomalies described above. However, 

because we aggregated our abundance indices per day, it is important to note that the abundance indices

for April 16th and 17th are different than the other survey days (see Box 1 for description of abundance 
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indices). On the 16th of April, the abundance index for point counts is the mean number of individuals 

detected per count, but averaged between only two point counts instead of the usual three counts. On 

that date, the abundance index for consecutive minute ARU counts was A10C , rather than A30C. On April 

17th, the abundance index for consecutive minute ARU counts was A20C, rather than A30C. We opted to 

leave these dates in our models with reduced survey effort, rather than remove them. To compensate for

the malfunctioning third recorder, we selected an additional 11 random minutes from each of the 

functional recorders so that we do have abundance indices of A66R and A30R for those dates, but they are 

sampled from only two ARUs instead of three ARUs.

For days when four ARUs were deployed, we listened to 22 random minutes from each ARU (88

minutes total), but standardized effort to 66 minutes and 30 minutes per day for the  A66R and A30R 

indices, respectively. To do this, we randomly selected 66 and 30 minutes from the entire survey day, 

which may include data from all four of the ARUs. 

Generalized Linear Mixed Model methods

We included an interaction between day of year and survey type because we anticipated that the 

effect of survey type might change over time, for example if increased numbers of species or 

individuals later in migration made distinguishing identifiable sounds on the audio recordings more 

difficult. We included an interaction between rain and survey type because we expected that even small

amounts of rain hitting the ARUs might impair our ability to detect birds on desk-based audio surveys 

more than a similar amount of precipitation during point counts. Because the number of observations 

for some values of the categorical weather variables was small, we pooled levels as follows: wind was 

binned into categories 0–1, 2, or 3+; rain was binned into “wet” and “dry” conditions; noise was binned
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as 0, 1, or >2. We centered and scaled all continuous variables. We did not perform model selection but 

rather included all variables in the final model due to an a priori expectation that all variables were 

relevant to the study system. We assigned the weather variables noted in person during point counts to 

all the desk-based audio surveys from the same unit on the same day. While weather conditions may 

have changed slightly over the course of the survey window, the observed weather conditions from the 

point count represent our best estimate of the conditions at each survey location on each survey day. 

Differences between individual ARUs

To investigate whether there was a discernible difference between our individual ARUs, we ran a

poisson GLM for all 10 consecutive minute ARU surveys that included all the predictor variables as 

described above and in the main text, and an additional “ARU ID” variable that identified which ARU 

was used on each survey. Chi-square ANOVA comparing this model to a null model without ARU ID  

showed no significant difference at the .05 level (χ2
3, 118 = 6.96, p = 0.07). Based on this result, to 

conserve degrees of freedom, we did not include ARU ID as a predictor variable in our final GLMM. 

Boosted Regression Tree (BRT) relative abundance models

We fit BRTs with a Laplace distribution, and an absolute loss link function which is more robust 

than a RMSE loss function to data with long tailed distributions (Hastie et al. 2009).  We ran BRTs with

an interaction depth of one, a minimum of one observation per node, and a bag fraction of 0.8. To 

optimize the number of trees and shrinkage parameter for our boosted regression tree models (BRTs), 

we set the cross validation parameter built into the gbm function to ten, and looked at graphs of the 

cross-validation test error for ten iterations of our model using the function gbm.perf in the gbm 

package (Greenwell et al. 2019, R Core Team 2020). We aimed to optimize the shrinkage parameter to 

grow at least 1000 trees before models started to overfit (indicated by increasing cross-validation test 
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error) (Elith et al. 2008). We tested shrinkage parameter values ranging from 0.01 to 0.0001, and 

graphed test error when adding up to 10,000 trees (Figs A1.4-A1.5). We chose our final shrinkage 

parameter and number of trees for each model based on visually assessing plots of cross-validation test 

error, attempting to avoid over fitting as much as possible for each particular model iteration (Figs 

A1.4-A1.5).  We opted to use a single shrinkage parameter and number of trees for all iterations of each

relative abundance model, rather than attempting to automatically tune the shrinkage parameter and 

number of trees within each iteration.  Because our final predictions were the averages from 1000 

model iterations, our results should not be unduly impacted even if individual model iterations did not 

achieve the minimum possible test error. We ultimately chose the following shrinkage parameters and 

number of trees for each of our models: shrinkage parameter of 0.0005 and 3000 trees for Winter Wren 

models Ap, A30R, A66R; shrinkage parameter of 0.0001 and 3000 trees for Winter Wren model A30C and 

Golden-crowned Kinglet models A30C and A30R; shrinkage parameter of 0.0005 and 2000 trees for 

Golden-crowned Kinglet models Ap and A66R. 

In some cross-validation folds, the test error increased immediately, after fitting only one tree 

(Fig. A1.5b). In these cases, we tested the smallest possible shrinkage parameter recommended by 

Elith, Leathwick & Hastie (2008), which was 0.0001. We believe that the immediate over fitting is 

likely due to the large number of zeros in the data, and we think it unlikely that we would be able to 

tune parameters to build good models with these data; the problem is with the data rather than with the 

tuning of the model parameters (see e.g. the large number of observed zeros in Fig. 3B, F). This 

supports our overall conclusion that using consecutive minute ARU recordings is less useful for 

assessing the relative abundance of migrant species than using randomly selected minutes from ARU 

recordings.
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To ensure that our results were not solely based on our choice of modeling method, we also 

modeled relative abundance using generalized additive models (GAMs) because they allowed 

specification of a negative binomial error distribution which we suspected might fit our data well. We 

tested GAMs using two of our four abundance indices: Ap and A30C.  GAMs were fit with a thin plate 

spline, with the number of knots optimized at k = -1. GAMs were fit using the ‘gam’ function in the 

‘mgcv’ package (Wood 2003, Wood 2011, Wood 2017). As with BRTs, we fit GAMs using 200 

iterations of five-fold temporal block cross validation, that used blocks of three consecutive days (Fig. 

S3). To compare GAMs and BRTs, we calculated a mean Root Mean Square Error (RMSE) of all 1000 

model iterations.

Details about final sample size

One SWIFT unit recorded 36 five-hour survey days, two SWIFT units recorded 35 five-hour 

survey days, and the AudioMoth unit recorded 24 five-hour survey days, for a total of 650 hours 

recorded by ARUs. Because of ARU malfunctions, on some days ARUs did not record the full five-

hour period (as described for the 16th and 17th of April), but we were able to manually turn on the units 

for the 10-minute period during the in-person point count. Therefore, we recorded 130 10 consecutive 

minute periods with ARUs (during which a human observer was present conducting a simultaneous 

point count) on 37 survey days, but only 124 periods of 22 randomly selected minutes on 36 survey 

days.  
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Analysis of duplicated recordings 

The duplicated recordings had perfect agreement about the occurrence of Winter Wren, 

indicating that we can have high confidence in Winter Wren identification from ARU surveys. We 

intended to use Krippendorff’s alpha (Krippendorff 2013) to assess agreement about detections of focal

species on duplicated desk-based audio surveys of 10 consecutive minute counts. However, we did not 

have enough detections of Golden-crowned Kinglet in our duplicated recordings to calculate a value for

Krippendorff’s alpha; we therefore do not have an estimate of the reliability of identification of 

Kinglets on ARU recordings. We encourage future researchers to give consideration to listener 

agreement when using ARU data. 

GAM results 

GAMs and BRTs performed similarly for estimating relative abundance trends across both 

survey types on which GAMs were tested based on evaluating Root Mean Square Error (RMSE) (Table

S2), and gave qualitatively similar models of the change in bird abundance during the migration 

season. This indicated that the choice of modeling method and error distribution did not have a large 

effect on the results of our model, and we ultimately chose BRTs following Johnston et al.’s (2015) 

methods for modeling abundance. 
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Figure A1.1: Correlation between predicted relative abundance index values for Winter Wren. 
Predictions are the mean calculated from 1000 iterations of a Boosted Regression Tree model. 
Spearman’s rank correlation coefficients can be found in Table A2.1. Predictions of index values are 
strongly correlated, indicating that the model is finding the same signal regardless of whether training 
data are from ARUs or point counts. Note that axis scales vary by abundance index; absolute values are
less important here than the relationship between predictions. Photo: “Winter Wren” by ilouque, used 
under license CC BY 2.0. Cropped from original.



Figure A1.2: Correlation between predicted relative abundance index values for Golden-crowned 
Kinglet. Predictions are the mean calculated from 1000 iterations of a Boosted Regression Tree model. 
Spearman’s rank correlation coefficients can be found in Table A2.1. Predictions of Ap and the random 
minute indices (A30R and A66R) are strongly correlated, indicating that the model is finding the same 
signal regardless of whether training data are from ARUs or point counts. Photo: “Golden-crowned 
Kinglet” by Laura Gooch, used under license CC BY-NC-SA 2.0. Cropped from original.

Figure A1.3: Schematic of temporal block cross-validation used for fitting and testing abundance 
models. Days (1, 2, 3, ..., 37) were grouped into blocks of three consecutive days. Each block of three 
days was assigned to one of five cross-validation folds (colors, panel A). Abundance models were fitted
by withholding data from days in one fold (e.g. the orange fold) and using data from days in the other 
four folds as training data (B). The performance of the model was evaluated based on how well it 
predicted data from days in the test fold (C). 



Figure A1.4: Test error for 10 cross validation folds for a Boosted Regression Tree model, for each of 
four abundance indices for Winter Wren relative abundance models. Colored lines show the cross-
validation fold for which the error was calculated, and the black vertical bar shows the number of trees 
we chose for each abundance index. Plots a, c and d all show test error for a shrinkage rate of 0.0005; 
plot b shows test error for a shrinkage rate of 0.0001. For models that appeared to overfit immediately 
(b), we believe the problem was with the data rather than with the tuning parameters (see discussion in 
Appendix 1). 



Figure A1.5: Test error for 10 cross validation folds for a Boosted Regression Tree model, for each of 
four abundance indices for Golden-crowned Kinglet relative abundance models. Colored lines show the
cross-validation fold for which the error was calculated, and the black vertical bar shows the number of
trees we chose for each abundance index. Plots a and d all show test error for a shrinkage rate of 
0.0005; plots b and c show test error for a shrinkage rate of 0.0001. For models that appeared to overfit 
immediately (b, c), we believe the problem was with the data rather than with the tuning parameters 
(see discussion in Appendix 1). 



Figure A1.6: Example data sheet for desk-based surveys of 10 consecutive minute ARU recordings. 
Species codes are 4-letter alpha codes; see Appendix 1, “Desk-based survey protocols” for details about
vocalization codes recorded in each 30-second interval.



Fig. A1.7: Species accumulation curves showing the number of species detected as a function of the 
number of minutes sampled.  Minutes were sampled in random order 100 different times from each 
ARU on each day (thin gray lines).  Thick colored lines show smoothed averages of number of species 
detected per minute.  The thin gray lines have been jittered vertically to improve visualization.  



Scientific Name Common Name
Point Count Detections ARU Detections

Visual Call Song Drum Call Song Drum
Branta canadensis Canada Goose 0 5 1 0 54 0 0
Anas platyrhynchos Mallard* 0 0 0 0 1 0 0
Meleagris gallopavo Wild Turkey* 0 0 0 0 1 0 0
Antigone canadensis Sandhill Crane 0 1 0 0 0 0 0
Gavia immer Common Loon 0 2 0 0 0 0 0
Cathartes aura Turkey Vulture 2 0 0 0 0 0 0
Haliaeetus leucocephalus Bald Eagle 4 7 0 0 9 0 0
Sphyrapicus varius Yellow-bellied Sapsucker 2 14 0 21 52 0 174
Dryobates pubescens Downy Woodpecker 6 5 1 4 57 0 30
Dryobates villosus Hairy Woodpecker 5 5 0 13 23 0 37
Colaptes auratus Northern Flicker 0 25 0 0 111 0 0
Dryocopus pileatus Pileated Woodpecker 1 6 0 4 26 0 18
Falco sparverius American Kestrel 1 0 0 0 0 0 0
Falco columbarius Merlin 0 2 0 0 4 0 0
Empidonax flaviventris Yellow-bellied Flycatcher 0 0 1 0 0 0 0
Empidonax minimus Least Flycatcher 0 0 4 0 0 101 0
Sayornis phoebe Eastern Phoebe 1 0 0 0 0 0 0
Vireo solitarius Blue-headed Vireo 0 0 10 0 0 43 0
Cyanocitta cristata Blue Jay 0 19 0 0 60 0 0
Corvus brachyrhynchos American Crow 1 12 0 0 23 0 0
Corvus corax Common Raven 0 28 0 0 159 0 0
Poecile atricapillus Black-capped Chickadee 0 38 23 0 90 92 2
Sitta canadensis Red-breasted Nuthatch 0 3 23 0 55 47 0
Sitta carolinensis White-breasted Nuthatch 0 3 8 0 3 1 0
Certhia americana Brown Creeper 3 18 24 0 197 398 0
Troglodytes hiemalis Winter Wren 0 0 62 0 1 748 0
Regulus satrapa Golden-crowned Kinglet 1 34 10 0 254 26 0
Regulus calendula Ruby-crowned Kinglet 6 0 18 0 5 114 0
Catharus minimus Gray-cheeked Thrush 1 0 0 0 0 0 0
Catharus ustulatus Swainson's Thrush 2 0 1 0 0 1 0
Catharus guttatus Hermit Thrush 6 10 9 0 38 170 0
Turdus migratorius American Robin 2 22 14 0 151 253 0

Table A1.1: Species detected during the 2019 field season on the Point Abbaye peninsula, showing the 
frequency of all detection types for each species, for both point count and ARU observations. Point count 
detections represent the number of individuals observed, while ARU detections represent the number of 30-
second intervals in which a species was detected. *denotes species detected only using ARUs. 



Scientific Name Common Name
Point Count Detections ARU Detections

Visual Call Song Drum Call Song Drum
Toxostoma rufum Brown Thrasher* 0 0 0 0 0 2 0
Pinicola enucleator Pine Grosbeak 0 1 0 0 0 0 0
Haemorhous purpureus Purple Finch 0 0 10 0 1 39 0
Spinus pinus Pine Siskin 0 1 0 0 0 0 0
Spinus tristis American Goldfinch 0 13 1 0 11 1 0
Spizelloides arborea American Tree Sparrow 1 0 0 0 0 0 0
Spizella passerina Chipping Sparrow 1 0 1 0 0 0 0
Passerella iliaca Fox Sparrow 0 0 1 0 0 0 0
Melospiza melodia Song Sparrow 0 0 1 0 0 0 0
Zonotrichia albicollis White-throated Sparrow 2 4 26 0 48 583 0
Junco hyemalis Dark-eyed Junco 0 6 3 0 6 4 0
Molothrus ater Brown-headed Cowbird 0 0 1 0 0 0 0
Quiscalus quiscula Common Grackle 1 11 0 0 4 0 0
Seiurus aurocapilla Ovenbird 1 0 11 0 0 270 0
Parkesia noveboracensis Northern Waterthrush 0 0 1 0 0 10 0
Mniotilta varia Black-and-white Warbler 1 1 6 0 0 20 0
Oreothlypis ruficapilla Nashville Warbler 0 0 1 0 0 5 0
Setophaga ruticilla American Redstart 0 0 7 0 1 78 0
Setophaga tigrina Cape May Warbler* 0 0 0 0 0 1 0
Setophaga americana Northern Parula 0 0 12 0 0 101 0
Setophaga fusca Blackburnian Warbler* 0 0 0 0 0 5 0
Setophaga petechia Yellow Warbler 0 0 2 0 0 0 0
Setophaga caerulescens Black-throated Blue Warbler* 0 0 0 0 0 13 0
Setophaga palmarum Palm Warbler 1 0 0 0 0 0 0
Setophaga pinus Pine Warbler 0 0 1 0 0 1 0
Setophaga coronata Yellow-rumped Warbler 2 2 47 0 1 659 0
Setophaga virens Black-throated Green Warbler 0 0 28 0 0 584 4
Pheucticus ludovicianus Rose-breasted Grosbeak* 0 0 0 0 0 4 0
NA passerine sp. 3 14 7 0 1300 112 0
NA woodpecker sp. 0 3 0 17 34 0 137
NA bird sp. 0 31 0 0 436 20 2
NA duck sp. 1 0 0 0 0 0 0
NA gull sp. 0 1 0 0 0 0 0
NA warbler sp. 1 1 0 0 0 2 0

Table A1.1 Continued



Scientific Name Common Name
Point Count Detections ARU Detections

Visual Call Song Drum Call Song Drum
NA vireo sp. 0 0 1 0 0 0 0
NA flycatcher sp. 0 0 0 0 0 1 0
NA corvid sp. 0 0 0 0 3 0 0

Table A1.1 Continued



APPENDIX 2
Relative abundance model results for all focal species

Species common name
Correlation

White-throated Sparrow WTSP
Predicted 0.912 0.96 0.976
Observed 0.777 0.923 0.919

Yellow-bellied Sapsucker YBSA
Predicted 0.941 0.94 0.946
Observed 0.681 0.621 0.679

Brown Creeper BRCR
Predicted 0.659 0.936 0.946
Observed 0.676 0.672 0.642

Yellow-rumped Warbler YRWA
Predicted 0.917 0.928 0.926
Observed 0.827 0.833 0.794

Ruby-crowned Kinglet RCKI
Predicted 0.855 0.85 0.924
Observed 0.636 0.378 0.541

Blue-headed Vireo BHVI
Predicted NA 0.849 0.895
Observed NA 0.26 0.49

Blue Jay BLJA
Predicted 0.745 0.661 0.886
Observed 0.5 0.473 0.621

Winter Wren WIWR
Predicted 0.799 0.894 0.853
Observed 0.69 0.798 0.792

Hermit Thrush HETH
Predicted 0.709 0.828 0.843
Observed 0.501 0.444 0.368

Black-throated Green Warbler BTNW
Predicted 0.821 0.814 0.839
Observed 0.942 0.994 0.993

Golden-crowned Kinglet GCKI
Predicted 0.041 0.876 0.836
Observed 0.495 0.377 0.56

Northern Flicker NOFL
Predicted 0.827 0.811 0.833
Observed 0.657 0.552 0.506

Northern Parula NOPA
Predicted 0.645 0.772 0.82
Observed 0.461 0.752 0.848

Ovenbird OVEN
Predicted 0.641 0.755 0.783
Observed 0.796 0.611 0.719

American Redstart AMRE
Predicted 0.804 0.767 0.77
Observed 0.674 0.866 0.866

Red-breasted Nuthatch RBNU
Predicted 0.611 0.707 0.693
Observed 0.491 0.391 0.22

Black-and-white Warbler BAWW
Predicted 0.46 NA 0.693
Observed 0.66 NA 0.386

Least Flycatcher LEFL
Predicted 0.438 0.82 0.69
Observed 0.686 0.728 0.879

American Crow AMCR
Predicted 0.523 0.495 0.658
Observed 0.269 0.141 0.29

Purple Finch PUFI
Predicted NA 0.694 0.594
Observed NA 0.2 0.437

Black-capped Chickadee BCCH
Predicted -0.562 0.57 0.588
Observed 0.293 0.343 0.231

Table A2.1: Spearman’s rank correlation coefficents for each pair of abundance indices for all 
species that were detected at least twice using both survey methods. Species are listed from highest 
to lowest predicted correlation values between Ap and A66R. Value type indicates whether the 
correlation was calculated using observed or predicted abundance index values. NA values indicate 
that there were too few detections of that species with the ARU survey method to fit a model.

Alpha 
code

Value 
type Ap,A30C Ap,A30R Ap,A66R



Species common name Data type
Correlation

Merlin MERL
Predicted NA 0.635 0.559
Observed NA -0.059 -0.059

American Goldfinch AMGO
Predicted NA NA 0.542
Observed NA NA 0.322

Hairy Woodpecker HAWO
Predicted 0.575 0.249 0.385
Observed 0.232 0.188 0.204

American Robin AMRO
Predicted 0.181 0.656 0.376
Observed 0.469 0.34 0.557

Dark-eyed Junco DEJU
Predicted 0.022 0.519 0.354
Observed 0.058 0.217 0.226

Bald Eagle BAEA
Predicted NA 0.221 0.183
Observed NA -0.148 0.176

Common Raven CORA
Predicted -0.115 -0.167 -0.233
Observed 0.54 0.451 0.27

Pileated Woodpecker PIWO
Predicted 0.74 -0.391 -0.238
Observed 0.715 -0.201 0.06

Downy Woodpecker DOWO
Predicted -0.564 -0.522 -0.525
Observed 0.301 0.098 0.253

Alpha 
code Ap,A30C Ap,A30R Ap,A66R



Figure A2.1 Predicted and observed relative abundance of 30 species observed in April and May of 
2019 on the Point Abbaye peninsula. Points show observed values for each abundance index, while 
lines show the mean predicted values from 200 five-fold cross validated boosted regression tree 
models. The vertical axes show the daily abundance index value (Ap, A30C, A30R or A66R, Table 1). 
Species are ordered from highest to lowest correlation of predicted values for Ap and A66R (Table A2.1). 
Four-letter species codes correspond to the species common names found in Table A2.1. Blank plots 
indicate that there was not enough data from that abundance index to fit a model.
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