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ABSTRACT. Documenting and interpreting trends in the abundance and distribution of bird populations is critical to monitoring
their status and setting conservation priorities. This process requires standardized monitoring and robust analytical techniques, which
can resolve trends at spatial scales of management interest while disentangling the influence that various data collection protocols can
have on the interpretation of results. We used a 19-year citizen-science-collected dataset (2001–2019), the Nocturnal Owl Survey, to
assess abundance trends in Barred Owl (Strix varia), Northern Saw-whet Owl (Aegolius acadicus), and Great Horned Owl (Bubo
virginianus) at both fine and broad-scales. To achieve this, we used a spatially explicit modeling approach that facilitates the borrowing
of information across spatial boundaries, allowing for more robust trend estimates at finer spatial scales. Further, we assessed the
potential influence of the call-playback protocol on trend estimates. At fine spatial scales, we found that a data collection protocol that
includes call playbacks provided more precise results to assess relative changes in abundance (i.e., reduced uncertainty). At broader
spatial scales, trend estimates were unaffected by data collection methodology (i.e., silent listening versus call playback). Specifically,
at the scale of the region or province, we found that populations of focal owl species in the Maritimes of Canada have remained stable
over the past 19 years. However, at finer scales, trends are more variable and may create opportunities to test alternative hypotheses
about drivers of population change and the effects of management actions at scales amenable to conservation action. The statistical
analyses are anticipated to form a national, publicly accessible framework for status assessments of owls in Canada and will provide
resource managers and researchers a base from which to evaluate the influence of land management and conservation practices on owl
populations across the nation.

Estimations spatialement explicites de la tendance des populations de Strigidés dans les provinces
maritimes du Canada et influence de l'utilisation d'enregistrements sonores
RÉSUMÉ. La documentation et l'interprétation de la tendance en matière d'abondance et de répartition des populations d'oiseaux
sont essentielles pour qu'on puisse surveiller leur statut et établir les priorités de conservation. Ce processus requiert des techniques de
suivis normalisés et d'analyses robustes, qui peuvent résoudre les tendances à des échelles spatiales d'intérêt pour la gestion tout en
examinant l'influence que les divers protocoles de collecte de données peuvent avoir sur l'interprétation des résultats. Nous avons utilisé
un ensemble de données collectées par des citoyens depuis 19 ans (2001-2019), l'Inventaire des Strigidés nocturnes, pour évaluer la
tendance de l'abondance de la Chouette rayée (Strix varia), de la Petite Nyctale (Aegolius acadicus) et du Grand-duc d'Amérique (Bubo
virginianus) à des échelles fines et larges. Pour ce faire, nous avons utilisé une approche de modélisation spatialement explicite qui facilite
l'emprunt d'informations à travers les frontières spatiales, permettant d'obtenir des estimations de tendance plus robustes à des échelles
spatiales plus fines. De plus, nous avons évalué l'influence potentielle du protocole relatif  à l'utilisation d'enregistrements sonores sur
les estimations des tendances. À des échelles spatiales fines, nous avons constaté qu'un protocole de collecte de données qui inclut
l'utilisation d'enregistrements sonores fournissait des résultats plus précis pour évaluer les changements relatifs dans l'abondance (c.-
à-d. une incertitude réduite). À des échelles spatiales plus larges, les estimations des tendances n'ont pas été influencées par la
méthodologie de collecte de données (c.-à-d. l'écoute silencieuse par rapport à l'utilisation d'enregistrements). Plus précisément, à
l'échelle de la région ou de la province, nous avons constaté que les populations des espèces de Strigidés examinées sont restées stables
au cours des 19 dernières années. Cependant, à des échelles plus fines, les tendances sont plus variables et peuvent représenter des
occasions de tester d'autres hypothèses quant aux facteurs de changement des populations et aux effets des mesures de gestion à des
échelles se prêtant à des mesures de conservation. Les analyses statistiques devraient former un cadre national accessible au public dans
le cadre de l'évaluation de la situation des Strigidés au Canada et fourniront aux gestionnaires de ressources et aux chercheurs une base
à partir de laquelle ils pourront évaluer l'influence des pratiques de gestion et de conservation sur les populations de Strigidés dans tout
le pays.
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INTRODUCTION
Effective wildlife conservation requires well-designed, large-scale
monitoring schemes be deployed to collect information about the
status of populations. In turn, these monitoring schemes can be
used to assess environmental and human-induced stressors, from
which we can establish benchmarks to track our management
successes and failures over time (Baillie 1990). Count data
collected by volunteer citizen scientists have proven to be
invaluable for assessing changes in populations of many bird
species, especially songbirds, at multiple spatial scales (Hudson
et al. 2017). For example, the North American Breeding Bird
Survey (BBS) is a gold standard, large-scale, citizen-science-led
survey. Since its inception in the 1960s, it has expanded to include
information from more than 5400 survey routes covering much
of the United States and Canada and portions of northern
Mexico and now provides robust trends and annual indices of
abundance for more than 500 species (Sauer et al. 2017). These
data are regularly analyzed to estimate how landbird populations
have changed (e.g., Smith et al. 2014), have been incorporated into
hundreds of independent research publications (Hudson et al.
2017), and are the quantitative foundation for bird conservation
in North America (Rosenberg et al. 2016, NABCI 2019). Further,
its free and easily accessible data products make it one of the most
productive citizen-science projects for generating scientific
outputs (Kullenberg and Kasperowski 2016). Although there is
much to be celebrated, not all avian groups are well monitored by
the BBS. Specifically, nocturnal species that breed outside the BBS
survey period (28 May–7 July) and sing outside the daily survey
window (beginning at or near dawn) often have insufficient data
to establish long-term trends (Knight et al. 2021). Owls are often
among these data deficient species and, as a result, their
conservation status remains poorly resolved (Domahidi et al.
2019). To address this challenge, targeted monitoring programs
that maximize detection can be employed (e.g., Tozer et al. 2016).

In Canada, volunteer-based owl surveys were pioneered by James
and Patricia Duncan in the early 1990s (Duncan 2021). In 1999,
a national workshop was hosted that resulted in the development
and adoption of standard owl survey guidelines (Takats et al.
2001). Like the BBS, the Nocturnal Owl Survey (NOS) was
designed to be the national standard for monitoring this otherwise
overlooked avian group. The primary objectives of the NOS are
to (1) provide robust and consistent counts of owls that can be
used to obtain scientifically credible measures of the status and
trends of owls at continental and regional scales, (2) identify
priority species for conservation, and (3) provide resource
managers with annual occurrence and abundance data for model-
based conservation planning. Further, the program is intended to
offer an organized opportunity for volunteer citizen scientists to
contribute to our understanding of owl ecology and increase
public appreciation for this rarely seen avian group. The Canadian
NOS is unmatched globally for its data coverage and longevity.
Smaller scale studies in the United States have adopted similar
protocols (Hodgman and Gallo 2004), and long-term studies in
Finland have monitored territoriality and nest success of
nocturnal birds of prey using disparate methods (Saurola 2009).

A key feature of the NOS data collection protocol is that it was
designed to reduce detection error, which gives it an advantage
over other survey methodologies. Detection error occurs when an

individual bird is present but is not detected during the survey
because it does not provide a visual or acoustic cue (availability),
or it is missed by the observer (perceptibility; Marsh and Sinclair
1989). Nocturnal species such as owls are often poorly monitored
by protocols that begin at or near dawn, when nocturnal birds
have low availability. To overcome this, NOS is done during the
night when owl call rates are highest and regularly incorporate a
call playback to decrease detection error (Takats et al. 2001),
which in turn can improve precision and predictive performance
of statistical models used to generate abundance trends (Isaac et
al. 2020). Now that a standardized NOS protocol has been in use
for 20 years across several Canadian provinces, a rigorous
investigation using these data can be realized.  

The primary objectives of the current study were to (1) estimate
abundance trends of owls at a spatial scale appropriate for
evaluating the ecological drivers of change and (2) investigate the
influence of call playback on trend estimates. To accomplish this,
we employed a modified analytical approach previously
developed for BBS (Link and Sauer 2002, Sauer and Link 2011)
and the Christmas Bird Count (CBC; Link et al. 2006, Soykan et
al. 2016) using three species regularly detected by the NOS in the
Canadian Maritime provinces of New Brunswick, Nova Scotia,
and Prince Edward Island (PEI). The Maritime provinces were
selected for model development because several other provincial
NOS datasets were not fully digitized and cleaned at the time of
writing.  

The standard BBS and CBC analytical frameworks resolve long-
term trends from heterogenous citizen science data across large,
hierarchically nested spatial scales including states, provinces,
Bird Conservation Regions (BCR), and their intersections. The
analytical methods used by these programs have evolved
considerably over time as new statistical approaches have been
developed. Specifically, the BBS analyses have moved from
graphed indices of the ratios of area-weighted average counts
(Erskine 1978), to route regressions (Link and Sauer 1998),
estimating equations (Link and Sauer 1994), and, currently,
hierarchical Bayesian models (e.g., Link and Sauer 2002, Sauer
and Link 2011, Smith et al. 2014). Although the standard models
employed by BBS and CBC enable a flexible and robust process
suitable for hundreds of species, the implementation of these
analyses is computationally intensive because of the use of
Markov chain Monte Carlo (MCMC) to estimate model
parameters for relative abundance. Further, whereas trends can
be scaled up to larger spatial units, they cannot be scaled down
using these methods, limiting their application to assessments of
finer-scaled drivers of population change (Meehan et al. 2019).  

We adopted an approach that allows for the spatial structure of
counts to be taken into consideration for finer-scale assessment
of abundance trends (e.g., Thogmartin et al. 2004, Bled et al. 2013,
Ethier and Nudds 2015, Smith et al. 2015, Meehan et al. 2019).
Specifically, spatial dependencies between count sites were
included in the model to facilitate the borrowing of information
across spatial boundaries and, subsequently, the generation of
more robust trend estimates at finer spatial scales and in areas
where data are sparse (Bled et al. 2013). This approach also
reduces the amount of spatial autocorrelation in model residuals,
which can lead to more reliable inferences about trends (Zuur et
al. 2017). Ultimately, these models allow investigations of
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abundance trends in relation to finer-scale processes, such as local
land cover change or climatic variability (Thogmartin et al. 2004,
Meehan et al. 2019). Further, land managers can locally test and
tailor management practices to meet the needs of species across
various jurisdictional boundaries (Ethier and Nudds 2015).  

Although it was beyond the scope of this study to assess the
influence of environmental covariates and call playback on species
detection probabilities (e.g., using an occupancy framework), we
chose to investigate the influence of call playback on long-term
trend estimates to determine if  this sampling approach creates a
bias and to help identify the best response variable for future
analyses. To do this, we compared trends and indices derived using
count data collected during the first 2-minute silent listening period
(also called the passive listening period) to those using the full
listening period (i.e., passive listening and call-playback periods)
to determine if  and to what extent trends (e.g., direction,
magnitude, and precision) are influenced by call playback. Given
that owl call propensity often increases after call playback of
conspecifics and/or heterospecifics (McGarigal and Fraser 1985,
Francis and Bradstreet 1997, Bosakowski and Smith 1998, Neri et
al. 2018), we predicted that the magnitude and direction would be
similar regardless of the count period used for trend estimation,
but that uncertainty around parameter estimates of trends would
be lower when using counts from the full listening period (Conway
and Gibbs 2005). This is because (1) detection probability for most
species will improve following call playback (Francis and
Bradstreet 1997), and (2) detection probability will increase as a
result of the longer sampling period associated with the full
listening period (Sólymos et al. 2013), effectively increasing sample
size in both instances (i.e., reducing zero counts). However, if
systematic bias exists because of factors that affect detection
probability over time (e.g., landscape changes or technology
improvements), we expect the relationship between trend estimates
(i.e., silent versus full listening) to deviate from the expected one-
to-one relationship.

METHODS

Data collection
Like the BBS, the NOS consists of a roadside survey protocol in
which citizen scientists collect counts of owls at evenly spaced stops
during the breeding season. In the Maritimes, these surveys
occurred between 1 April and 15 May of each year. Each route was
made up of ten stops, spaced 1.6–2 km apart to reduce the
likelihood of detecting an individual owl at multiple stops per route
(Takats et al. 2001; Fig. 1). At each stop, a citizen scientist, trained
in owl vocalization identification using audio demos and
educational webinars, conducted a 2-minute point count (silent
listening period) and, subsequently, played a standardized set of
owl calls over a speaker to elicit responses from target species. This
consisted of calls of Boreal Owl (Aegolius funereus) and Barred
Owl (Strix varia) alternating with timed listening periods. In New
Brunswick and PEI, the full listening period was approximately 13
minutes, whereas in Nova Scotia the full listening period was
approximately 9 minutes because there are two fewer Barred Owl
call playbacks and accompanying listening periods (approximately
2 minutes each). Based on a formal test of detection probability,
we anticipated that all included species would have been detected
by the end of the 9-minute listening period, if  present, with an

approximate 95% cumulative detection probability, with few
detections thereafter (Lima et al. 2020), making these protocols
comparable. Surveys began 30 minutes after sunset and took
approximately 3 hours to complete. Routes were sampled at least
once per year, often by the same observer. Most routes were
surveyed every year, but some routes became active or inactive
over time depending on the availability of citizen scientists to
conduct surveys and the suitability of the survey route over time.
In addition to counting the number of each species detected,
citizen scientists also recorded auxiliary information on survey
conditions including local environmental covariates. This
information was used to standardize detection probability using
an index-based approach (Nichols et al. 2009), similar to the BBS
(USGS 2020). Data were entered through a customized online
data entry system available on NatureCounts (www.naturecounts.
ca), a service provided by Birds Canada. Data were manually
reviewed for form accuracy by Birds Canada staff. Raw data can
be made available for download directly into R using the
naturecounts package (LaZerte and Lepage 2019). More details
about the NOS survey protocol can be found in the Guidelines for
nocturnal owls monitoring in North America (Takats et al. 2001).

Fig. 1. Map of nocturnal owl survey routes start points in the
Maritimes region of Canada, including 50 km² grid cells used
for the spatially explicit analysis of relative abundance and
trends, from 2001–2019.

Data cleaning
Like the BBS (USGS 2020), the NOS uses strict standardizations
on survey timing and weather condition. These standardized
procedures enable the generation of unbiased estimates of trends
in relative abundance of a species over time without explicitly
modeling imperfect detection (Nichols et al. 2009). Wind velocity,
precipitation, and temperature are among the variables known to
affect owl calling propensity (e.g., Lima et al. 2020) and are
regularly measured by NOS citizen scientists. Therefore, we
removed routes run below the minimum temperature cut off  of
-15 °C and those that were run when wind speeds exceeded 20 km
(Beaufort scale > 3) or during a precipitation event (rain or snow),
as measured at the start of the survey route.  
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Because our aim was to focus on species that are persistent,
abundant, and biologically associated with the areas under study,
we excluded rarely detected species from our analyses, i.e., species
that had a mean abundance per year ≤ five and species that were
detected in fewer than half  of the survey years. Three species were
subsequently retained for the analysis: Barred Owl, Northern
Saw-whet Owl (Aegolius acadicus), and Great Horned Owl (Bubo
virginianus).

Model development
The basic statistical unit of the analysis was the sum of owls of
the three focal species counted on a survey route within a given
year, collected either during the first 2-minute silent listening
period only or over the entire listening period, i.e., including after
call playbacks. Owls marked as a repeat by the observer were
removed to better ensure individuals were counted only once per
route. Routes on which a species was never detected were dropped
from the species-specific analysis. Our model describes the sum
of counts of each species λi,k,t for grid cells i encompassing unique
combinations of observer routes k during a year t, where routes
were assigned to cells on a regular grid. A grid size of 50 km² was
used for the analysis because this was the scale at which routes
were systematically assigned during survey development
(Whittam 2001). In total, our analysis encompassed 105 grid cells
containing 183 NOS routes within the provinces of New
Brunswick (number of routes, 108), Nova Scotia (51), and PEI
(24; Fig. 1). There was an average number of 6.23 neighbourhood
links.  

Counts were modeled from a negative binomial count distribution
for y, that is, y|Ɛ~Poisson(µƐ) and Ɛ~Gamma(Ф-1, Ф-1) (Lindén and
Mäntyniemi 2011). This differs from the BBS and CBC approach,
which includes an observation-level random effect to deal with
overdispersed Poisson counts (Sauer and Link 2011, Soykan et
al. 2016), that is, y|Ɛ~Poisson(µƐ) and Ɛ~Normal(µ, σ). The
negative binomial is expected to produce similar results to the
standard BBS and CBC approach; however, it reduces computing
time and size of the posterior sample because it returns a single
dispersion estimate (Meehan et al. 2019). Assessing species-
specific distributional assumptions using model selection is also
an option, which could be tested in future iterations of this
analysis.  

Expected counts per grid cell µi,t were assumed to be a function
of spatially structured grid cell and year effects plus unstructured
variation among observer routes and cell years. The linear
predictor took the following form: 

log(µit) = αi + τ iT ikt + κk+ yit (1)
  

Parameters included a cell-specific random intercept αi with an
intrinsic conditional autoregressive (CAR) structure (Besag et al.
1991), which allowed for information on relative abundance to be
shared across neighbouring cells. Specifically, values of αi came
from a normal distribution with a mean value related to the
average of adjacent cells and with a conditional variance
proportional to the variance across adjacent cells and inversely
proportional to the number of adjacent cells. Parameters τi were
modeled as spatially structured, cell-specific, random slope
coefficients for the year effect using the CAR structure, with

conditional means and variances as described above. Spatial
structure was incorporated into τi to allow for information about
year effects to be shared across neighbouring cells. Year T was
transformed such that the maximum year was zero, and each
preceding year was a negative integer. This scaling means that the
posterior median of cell-specific estimates of αi represents the
index of relative abundance during the final year of the time series.
Differences in relative abundance among observer-route
combinations, which could arise because of difference in habitat
condition or observer experience, was accounted for with an
independent and identically distributed (idd) random effect. To
derive an annual index of abundance, we included a random effect
per cell and year with an idd and combined these effects with α 
and τ.

Model implementation
Models were fit using a Bayesian framework with Integrated
Nested Laplace Approximation (INLA) using the R-INLA
package (Rue and Martino 2009) for R statistical computing
(version 4.0.2; R Core Team 2020). The spatial structure
parameters αi and τi were scaled such that the geometric mean of
marginal variances was equal to one (Sørbye and Rue 2014,
Riebler et al. 2016, Freni-Sterrantino et al. 2018), and priors for
precision parameters were penalized complexity (PC) priors, with
parameter values UPC = 1 and PC = 0.01 (Simpson et al. 2017).
Precision for the random-observer route and cell-year effects were
assigned a PC prior with the same parameter values. In general,
the weakly informed priors we used tend to shrink the structured
and unstructured random effects toward zero in the absence of a
strong signal (Simpson et al. 2017). Model fit was assessed by
visually inspecting the histograms generated with cross-validation
probability integral transformation (PIT; Dawid 1984), which
approximates a uniform distribution if  fit was reasonably good
(Cazado et al. 2009, Held et al. 2010).  

Following model analysis and validation, posterior medians and
95% credible intervals (CI) were computed per cell for αi and τi.
Posterior summaries were then mapped to visualize spatial
variation in relative abundance indices and trends. We also
aggregated 50 km² results to the provincial and regional level
because these scales may be of interest to resource managers
designing and implementing policies in Maritime region of
Canada. Trend coefficients were aggregated at each scale by
averaging trends for all equal area grid cells where the cell centroid
fell within the area of interest.  

Using a Spearman's rank correlation at the scale of the grid cell,
we compared abundance and trends derived using count data
collected during the first 2-minute silent listening period only to
those derived using count data collected during the full listening
period (i.e., including call playback). We also evaluated
uncertainty estimates τi by comparing credible interval widths
using a one-tailed t-test. Aggregated trend coefficients were also
compared at the provincial and regional scales for consistency in
direction, magnitude, and significance.

RESULTS
The number of grid cells and routes on which at least one species
was detected was greater when call playback was used (i.e., full
listening period) as compared to the 2-minute silent listening
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Table 1. Aggregated relative abundance trends (annual percent change) for Barred Owl (Strix varia), Great Horned Owl (Bubo
virginianus), and Northern Saw-whet Owl (Aegolius acadicus) in the Maritime provinces of Canada, from 2001–2019, calculated
separately for the 2-minute silent listening period and full listening period, which included call playbacks. If  lower and upper credibility
intervals (CI) include zero, trends are considered non-significant.
 

Silent listening Full listening

alpha lower CI upper CI tau lower
CI

upper
CI

alpha lower
CI

upper
CI

tau lower
CI

upper CI

Barred Owl
New Brunswick 1.02 0.61 2.08 1.19 -7.09 12.81 2.63 1.73 5.41 0.81 -6.11 13.57
Nove Scotia 0.77 0.53 1.07 3.53 -2.98 10.37 2.20 1.55 3.15 3.26 -2.40 10.56
Prince Edward Island 0.78 0.53 1.04 1.59 -4.72 7.96 2.28 1.53 3.28 2.38 -6.60 9.61
Maritime Provinces 0.87 0.56 1.85 2.21 -5.81 11.40 2.43 1.62 4.79 1.81 -5.42 12.10

Great Horned
Owl

New Brunswick 0.20 0.11 0.35 -3.59 -10.39 4.44 0.33 0.18 1.22 -4.26 -9.53 2.87
Nove Scotia 0.20 0.13 0.30 -2.13 -6.95 4.11 0.28 0.18 0.46 -3.67 -8.33 1.41
Prince Edward Island 0.19 0.13 0.30 -1.43 -6.21 4.29 0.28 0.17 0.42 -2.73 -7.30 2.34
Maritime Provinces 0.20 0.12 0.33 -2.80 -9.48 4.30 0.27 0.16 0.74 -3.92 -9.14 2.32

Northern Saw-
whet Owl

New Brunswick 0.30 0.20 0.50 -2.98 -10.37 4.70 0.62 0.40 1.24 -1.83 -7.45 5.52
Nove Scotia 0.31 0.21 0.42 -1.39 -7.16 5.60 0.63 0.44 0.92 -0.37 -4.53 4.14
Prince Edward Island 0.33 0.23 0.43 -2.65 -8.47 3.95 0.69 0.47 1.02 -1.12 -5.88 3.81
Maritime Provinces 0.30 0.20 0.46 -2.39 -9.60 4.99 0.63 0.41 1.04 -1.19 -6.83 4.66

 

period only. Specifically, when total counts from the full listening
period were used as the response variable, the number of occupied
routes increased by 18% for Barred Owl, 21% for Great Horned
Owl, and 10% for Northern Saw-whet Owl, and the number of
occupied grid cells increased by 16% for Barred Owl, 18% for
Great Horned Owl, and 4% for Northern Saw-whet Owl.  

Inspection of the PIT histogram indicated satisfactory model fit
for both count methods, i.e., counts during 2-minute silent
listening only and total counts during full listening period with
playback. The posterior median estimate for Ф, the dispersion
parameter, was < 1 for each species and count method (range =
0.41–0.71), suggesting counts were not overdispersed relative to
a Poisson distribution, except for Barred Owl (Ф 2-minute silent 1.21;
Ф total = 1.23).  

The posterior median of cell-specific estimates of αi indicated
that, in 2019, Barred Owl were the most abundant, followed by
Northern Saw-whet Owl and Great Horned Owl. On average,
Barred Owl were found in the highest abundance in New
Brunswick, whereas Northern Saw-whet and Great Horned Owl
were more evenly distributed (Table 1; Fig. 2). Posterior median
values for τi, the temporal trend from 2001–2019 transformed to
annual percent change, varied spatially for each species. Barred
Owl generally experienced negative cell-specific trends in Nova
Scotia and positive trends in New Brunswick and PEI (Fig. 3A).
Trends were significantly positive in a few grid cells in PEI
(number cell; n = 2 2-minute silent, n = 3 total) and New Brunswick (n
= 2 total) and significantly negative in upwards of two cells in Nova
Scotia. Great Horned Owl had more negative and spatially
variable trends, which shifted substantially with count method.
On average, Great Horned Owl had stable trends in northwestern
New Brunswick and southern Nova Scotia (Fig. 3B). There were
14 cells reporting significant negative trends using counts from

the 2-minute silent listening period compared to 48 cells using
total counts. Northern Saw-whet Owl displayed more negative
trends in the east but with moderate spatial variability depending
on count method (Fig. 3C). Significant negative trends for
Northern Saw-whet Owl were detected in PEI (n = 1 2-minute silent,
n = 2 total) and parts of Nova Scotia (n = 5 2-minute silent, n = 7 total).

The parameters αi and τi were significantly negatively correlated
across space for Barred Owl (rho 2-minute silent = -0.64, p < 0.001;
rho total = -0.36, p < 0.001) and Great Horned Owl, (rho 2-minute

silent = -0.54, p < 0.001; rho total = -0.37, p < 0.001 outliers removed),
indicating that negative trends generally overlapped areas of high
abundance and visa versa. The relationship between these
parameters was positively significant for Northern Saw-whet Owl
using total counts (rho 2-minute silent = -0.01, p = 0.91; rho total = 0.24,
p = 0.01 outliers removed; Fig. 4).  

Rank correlation of cell-specific τi estimates between count
methods indicated significant positive correlations for all species
(Fig. 5). There was evidence of negative bias in trend estimates
when using total counts for Great Horned Owl (Fig. 5B) and a
positive bias when using total counts for Northern Saw-whet Owl
(Fig. 5C). In other words, total count estimates of τi are generally
more negative for Great Horned Owl and slightly more positive
for Northern Saw-whet Owl compared to those derived from the
silent listening period counts. There was significantly less
uncertainty around estimates of τi for total counts when
compared to counts collected during the silent listening period
only, as follows: Barred Owl (t = -9.25, df = 88, p < 0.001), Great
Horned Owl (t = -5.33, df = 78, p < 0.001), and Northern Saw-
whet Owl (t = -7.13, df = 97, p < 0.001).  

Posterior median trends aggregated to the provincial scale, and
for the entire Maritimes region, were consistent in direction,
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Fig. 2. Posterior median of cell-specific estimates of αi representing the index of relative abundance in 2019 for three species of owls
in the Maritimes region of Canada. Maps on the left were derived using counts from the 2-minute silent listening period, whereas
maps on the right were derived using the full listening period, including call playback.
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Fig. 3. Posterior median of cell-specific estimates of τi representing trends in relative abundance from 2001–2019 for three species of
owls in the Maritimes region of Canada. Maps on the left were derived using counts from the 2-minute silent listening period,
whereas maps on the right were derived using the full listening period, including call playback. Credibility intervals that did not
include zero were considered significant and are indicated with an asterisk (positive = white; negative = black).
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Fig. 4. Plots comparing cell-specific trends (τi) estimates to
indices of relative abundance (αi) for nocturnal owl survey
counts collected during the 2-minute silent listening period and
full listening period, including call playback, in the Maritimes
region of Canada. Significantly negative trends (i.e., credibility
intervals that did not include zero) are shown in red.

Fig. 5. Plots comparing cell-specific trend τi estimates of
nocturnal owl survey counts collected during the 2-minute
silent listening period and full listening period, including call
playback, in the Maritimes region of Canada. Results of a rank
correlation analysis indicated significant positive correlations
for (A) Barred Owl (Strix varia; rho = 0.65, p-value < 0.001),
(B) Great Horned Owls (Bubo virginianus; rho = 0.43, p-value <
0.001), and (C) Northern Saw-whet Owl (Aegolius acadicus; rho
= 0.62, p-value < 0.001). The solid line indicates one-to-one
correspondence between trend estimates.

magnitude, and significance (Table 1). Generally, owl populations
in the Maritimes region of Canada appear to have remained stable
over the past 19 years. This result was unaffected by the count
method used.

DISCUSSION
Results at the provincial and regional scales suggest that the focal
owl species included in this analysis have had stable abundance
trends over the duration of the study period. However, analysis
at finer scales revealed trends that may have important
implications for conservation and management of these

populations. For example, Great Horned Owl had a relatively
large number of grid cells displaying significant negative trends;
this result is not apparent at broader scales. Further, we found
that cell-specific trend estimates for Great Horned Owl were
negatively correlated with abundance, i.e., negative trends in areas
of high abundance and vice versa (Fig. 4). A high proportion of
significantly negative cell-specific trends in areas of relative high
abundance could have a disproportionate impact on the local
population and may warrant further investigation if  this pattern
persists.  

Cell-specific trend estimates τi derived from counts collected
during the silent listening period and counts collected over the
full listening period corresponded well for Barred Owl but showed
bias for both Great Horned Owl and Northern Saw-whet Owl.
Although it is known that systematic changes in effort (Dunn et
al. 2004) or observer skill (Link and Sauer 2002) can bias trends,
we would expect those processes to influence both response
variables equally and in the same direction. A systematic change
in detection probability, due to continuous improvement in
playback technology (Conway and Gibbs 2005), may have led to
the observed differential changes in the response of Great Horned
Owl and Northern Saw-whet Owl to playback. It is also possible
that landscape changes, such as forest clearing, could have
systematically affected the attenuation distance of call playback
(Yip et al. 2017) and thus the detection of owls during the full
listening period. Regardless of the mechanism causing the bias,
it appears that there are species-specific differences in the
response, with decreasing detections of Great Horned Owl and
increasing detections of Northern Saw-whet Owl following the
use of call playback over time. Identifying the cause of the species-
specific biases would require field trials to understand how
different playback technologies and landscape changes, for
example, affect the response of these species to call playback (for
example, see Lima et al. 2020).  

Depending on the survey objective, passive surveys (i.e., silent
listening) may provide less biased results than call-playback
surveys, which may prompt individual owls to move toward the
surveyor and influence assessments of habitat association or
detection probability based on distance sampling techniques
(Conway and Gibbs 2005). However, the reduced probability of
detecting an owl using passive surveys is an important
consideration because the failure to detect an owl when present
can also lead to biased estimates and misleading results (Shonfield
et al. 2018). Although we cannot say with absolute certainty which
method (if  either) represents the true population trend of owls in
the Maritimes, reduced uncertainty associated with using total
counts lends support to using this response variable. However,
consideration ought to be given to the potential for species-
specific biases in trends caused by call playback. Until the source
of these biases can be resolved, counts collected during the silent
listening period should be used for finer-scale assessments of
change in relative abundance and distribution. At broader spatial
scales, the magnitude, direction, and uncertainty in trend
estimates were largely unaffected by which count method was used
as the response variable, which suggests status designation would
not be impacted by the choice of response variable. If  a status
assessment was conducted across regions with different call-
playback protocols (e.g., central and northern Ontario; Badzinski
2006), counts collected during the silent listening period would
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need to be used as the standardized response, or a means to correct
for the differences in detection probability that result from
different call-playback protocols would need to be developed.  

Deriving finer-scale trends in abundance creates opportunities to
test alternative hypotheses about drivers of population change
and the effects of management actions at scales amenable to
conservation action (Ethier and Nudds 2015, Ethier et al. 2017).
Our work provides a framework from which correlation analysis
on precomputed annual abundance indices or trends (as opposed
to the original count data) can be easily developed by regional
resource managers, enabling the investigation of the spatially
varying ecological processes influencing trends. For example,
hypotheses that assess changes in owl distribution and abundance
due to climate or land-use change associated with logging, urban
development, and agriculture could be tested with precomputed
trends. These variables could be measured by way of remote
sensing across the region including land-use composition and
configuration, climate, terrain, and human influences. Other
drivers of population change, such as resource availability, would
require alternate data sources. Although using precomputed
trends may be considered less elegant, they are far more accessible
to land managers who may not have the resources or expertise to
run spatially explicit hierarchical Bayesian models on the original
count data (Meehan et al. 2019). Further, we anticipate that, by
making precomputed trends and indices publicly available
through Birds Canada’s NatureCounts web platform, they will be
more broadly used by the scientific community for independent
research (Dunn et al. 2005), as has been demonstrated with the
BBS (Sauer et al. 2003) and CBC (Soykan et al. 2016) results.  

In addition to informing the status of owls in the Maritimes, our
study demonstrates the utility of hierarchical Bayesian models
that incorporate spatial dependencies to obtain high-resolution
trend estimates for geographic areas that are better suited to
conservation planning and management (Thogmartin et al. 2004,
Bled et al. 2013, Ethier and Nudds 2015, Smith et al. 2015).
Including autocorrelation in our models not only allowed for
statistical assumptions to be satisfied, but also improved the
predictive power by allowing the borrowing of information from
neighbourhood locations (Bled et al. 2013). It is anticipated that
the statistical analysis presented here will form the national
framework for multi-scale status assessments of owls in Canada
and, through open-source data portals like NatureCounts,
provide resource managers with a basis from which to assess the
influence of various land management practices on owl
populations across the nation.

Responses to this article can be read online at: 
https://www.ace-eco.org/issues/responses.php/2075
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