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ABSTRACT. Animal behavior regularly has substantial effects on the outcomes of reintroduction efforts. Reintroduction involves
capturing a subset of individuals from a source population and releasing them into novel environments where variation in retention
rates, predation, and territory acquisition could affect the age-class structure, sex ratio, and genetic and phenotypic characteristics
of restored populations. Exploratory behavior, quantified as the rate that individuals explore novel settings, is one such heritable trait
that might be affected by translocation, especially given recent studies suggesting that exploratory behavior can predict the survival
and retention of individuals in unfamiliar environments. To assess the potential effects that translocation may have on exploratory
behavior, we compared exploratory behavior for three Brown-headed Nuthatch (Sitta pusilla) populations: (1) a population
reintroduced to Everglades National Park in 1998; (2) a population close to the original source population, and (3) a distant control
population in north Florida. Exploratory behavior was quantified by placing individuals (n=17 per population) in an exploratory
chamber and comparing flights/hops, scanning events, thoroughness of exploration, and other movement behaviors. We found that
individuals in the reintroduced population scanned less, conducted fewer flights/hops, and were more sedentary than individuals in
the other populations. Our findings suggest a shift in the prevalence of personality types toward slow explorers has taken place in
the 20 years since reintroduction, adding to other studies suggesting that slow explorers fare better in novel environments. Although
the reintroduced population contained fewer fast-exploring individuals relative to the other populations studied, fast-explorer
phenotypes may increase over time if  they convey the fitness benefits described in other studies.

Le lièvre et la sitelle : les explorateurs lents dominent dans une population réintroduite de sitelles à
tête brune (Sitta pusilla) deux décennies plus tard
RÉSUMÉ. Le comportement animal influe souvent considérablement sur le résultat des efforts de réintroduction. La réintroduction
implique la capture d'un sous-ensemble d'individus parmi une population source et leur libération dans de nouveaux environnements
où la variation des taux de rétention, la prédation et l'acquisition de territoires pourraient affecter la structure des catégories d'âge,
le ratio entre les sexes et les caractéristiques génétiques et phénotypiques des populations restaurées. Le comportement exploratoire,
quantifié comme le rythme auquel les individus explorent les nouveaux environnements, est l'un de ces traits héréditaires qui peuvent
être affectés par le déplacement, en particulier si l'on tient compte des études récentes suggérant que le comportement exploratoire
peut prédire la survie et l'implantation des individus dans des environnements non familiers. Pour évaluer les effets potentiels du
déplacement sur le comportement exploratoire, nous avons comparé cette dernière caractéristique chez trois populations de sitelles
à tête brune (Sitta pusilla) : (1) une population réintroduite dans le parc national des Everglades en 1998 ; (2) une population proche
de la population source originale ; et (3) une population témoin distante au nord de la Floride. Le comportement exploratoire a été
quantifié en plaçant des individus (n=17 par population) dans une chambre exploratoire et en comparant les vols/sauts, les événements
d'observation, la rigueur de l'exploration et les autres déplacements. Nous avons constaté que les individus des populations
réintroduites observaient moins, réalisaient moins de vols/sauts et étaient plus sédentaires que les individus des autres populations.
Nos résultats suggèrent un changement dans la prévalence des types de personnalité en faveur des explorateurs lents au cours des 20
années qui se sont écoulées depuis la réintroduction, ce qui vient s'ajouter aux autres études suggérant que les explorateurs lents
obtiennent de meilleurs résultats dans les environnements nouveaux. Même si la population réintroduite comprenait moins d'individus
explorateurs rapides que les autres populations étudiées, les phénotypes d'explorateurs rapides peuvent augmenter au fil du temps
s'ils manifestent les avantages en termes de condition physique décrits dans d'autres études.
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INTRODUCTION
Efforts to restore wild bird populations to formerly occupied areas
have increased steadily in recent years to counter the negative
effects of habitat loss and fragmentation (Armstrong and Seddon
2008). Such reintroductions typically occur in areas that have
undergone extensive restoration and satisfy pre-extirpation
conditions (Armstrong et al. 2015). Translocation is an important
conservation tool, but the process of capturing birds and then
releasing them in foreign settings likely has many potentially
unintended and as yet undocumented effects (Smith and
Blumstein 2013). For example, the procedures used to capture
individuals for translocation can lead to biases in the age, sex, or
behavioral phenotype of individuals moved (Garamszegi et al.
2009, Merrick and Koprowski 2017). Variation in the responses
to the stress associated with translocation may introduce
additional biases among individuals comprising the founding
population (Mihoub et al. 2011). Furthermore, the unusual
conditions present during the early phases of reintroduction when
conspecifics occur at low densities could affect dispersal and
breeding behavior for years (Komdeur 1992, Moseby et al. 2020).

Behavioral phenotypes are increasingly recognized as influential
factors in reintroduction efforts. Individuals in a population
exhibit temporally consistent behavioral differences that are often
heritable and predictable across contexts. Such “personality” or
behavioral types are increasingly linked to differential
performance of individuals in reintroductions to novel
environments (Reale et al. 2007, May et al. 2016, Cornelius et al.
2017). For example, brushtail possums (Trichosurus vulpecula)
that exhibited risk-taking behaviors prior to translocation had
lower survival than individuals exhibiting less risky behavior (May
et al. 2016). If  individual variation in risk-taking behavior relates
to adaptive polymorphisms in a source population (Wolf and
Weissing 2012), translocation may artificially alter the prevalence
of the behavior and lead to a reduction in the behavioral diversity
of reintroduced populations (McDougall et al. 2006, Geffroy et
al. 2020).  

Exploratory behavior, expressed as the rate at which individuals
investigate novel environments, is often consistent within
individuals but varies among individuals in a population and is
also heritable in many avian taxa (Sih et al. 2004, Dochtermann
et al. 2019). Exploratory behavior co-varies with other behaviors,
and quantifying exploratory behavior can be used to position
individuals along a proactive-reactive continuum where proactive
individuals are aggressive, bold, and actively explore novel
environments and reactive individuals are shy, less active, and
respond carefully to changes in their environment (Koolhaas et
al. 1999, Sih et al. 2004, Reale et al. 2007). Russell (1983), and
Dingemanse et al. (2004) established a framework that linked
movements within novel environments to the exploratory
tendencies of individuals outside novel environments. Proactive
or fast explorers flew, hopped, and scanned more frequently
within the test environment while reactive or slow explorers visited
fewer positions, hopped less, and scanned less frequently (Huang
et al. 2016, Cornelius et al. 2017). Slow explorers appear to be
more sensitive to environmental changes, more behaviorally
flexible in response, and better at responding to vocal cues received
as social information while exploring novel environments
(Dingemanse et al. 2002, Guillette et al. 2011, Smit and van Oers

2019). Importantly, measurements of exploratory behavior in
birds have also been linked to survival (May et al. 2016, Cornelius
et al. 2017), response to stress (Carere et al. 2003), productivity
(Both et al. 2005), behavioral flexibility (Wright et al. 2010), and
propensity to disperse when placed in unfamiliar environments
(Dingemanse et al. 2003, Reale and Montiglio 2020), all factors
that could influence translocation success. Further, among-
individual behavioral variation in small populations is a key
determinant of population viability (Sæther & Engen 2019). Slow
exploration has been shown to enhance short-term survival of
individuals in novel settings (Bremner-Harrison et al. 2004, May
et al. 2016, Cornelius et al. 2017, Geffroy et al. 2020), but few (if
any) studies have examined the long-term effect of such behaviors
generations after reintroduction. Therefore, monitoring
behavioral phenotypes of surviving individuals years, even
decades, following reintroductions can be an important
assessment tool.

Research Design
We assessed exploratory behavior in a Brown-headed Nuthatch
population that was reintroduced to Everglades National Park in
south Florida ~20 years earlier (Lloyd et al. 2009). Prior to the
establishment of Everglades National Park (hereafter “EVER”)
in 1947, over 85% of the forest was logged and fire was suppressed
resulting in the extirpation of four cavity-nesting bird species by
the mid-1960s. In the mid-1990s significant restoration efforts
were underway and the focus turned to the restoration of native
cavity-nesting birds (Slater 2001). We conducted similar
assessments in (1) a south Florida population near the original
source population (Picayune Strand State Forest; hereafter
“PSSF”) used to repopulate the Everglades and (2) a
geographically and genetically distinct population in north
Florida (hereafter “NFLA”; Han et al. 2019).  

We sampled NFLA sites in order to compare exploratory behavior
in an un-manipulated population (i.e., never reintroduced or
extirpated) from continuous habitats. PSSF and EVER are
embedded in a fragmented landscape which likely affects
movement behavior and influences the variation in exploratory
phenotypes found there (Clobert et al. 2009, Sih et al. 2011,
Berger-Tal and Saltz 2019). For example, Cornelius et al. (2017)
found that fragmentation explained intra-population variation in
exploratory behavior and dispersal success in two populations of
White-shouldered Fire-eyes (Pyriglena leucoptera). Individuals
from fragmented forests were slower explorers than those from
continuous habitats, who quickly dispersed away from a novel
patch. Further, slow explorers dispersed successfully through a
high-risk matrix and arrived at a new patch, while fast explorers
from continuous habitats experienced high mortality in the matrix
and low dispersal success. Fragmentation in south Florida has
resulted in increasing genetic differentiation between northern
and southern nuthatch populations (Han et al. 2019); because
exploratory behavior is often heritable, it follows that this
behavioral type could be under selection in southern populations,
which could skew our observations (Sih et al. 2012, Geffroy et al.
2020). Therefore, we also sampled in continuous NFLA in order
to exclude the possibility that fragmentation might explain
similarities between PSSF and EVER.  

Given the growing evidence that slow explorers fare better when
introduced to novel environments (Geffroy et al. 2020, Maspons
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Table 1. Predicted effects on behavior by reintroduction and fragmentation.
 
Location EVER PSSF NFLA

Fragmentation Fragmented Fragmented Continuous
Degree Fragmentation Isolated Corridors to other populations embedded in dangerous matrix No significant barriers to dispersal
Population History Reintroduced Never reintroduced “Source” Never reintroduced

Predicted Exploratory Behavior
 Effect Fragmentation Slower Slower Fastest
 Effect Reintroduction Slowest Faster than EVER Fastest

et al. 2020) and assuming exploratory behavior is moderately
heritable in this species (Dochtermann et al. 2019), we predicted
that birds in the reintroduced EVER population would be the
slowest explorers. We predicted that PSSF birds would explore
faster than EVER birds, but made no predictions about
differences in behavior between PSSF and NFLA. We further
predicted that NFLA birds from continuous habitats that
presumably have no experience with the risks of habitat
boundaries would be the fastest explorers (Cornelius et al. 2017).
Finally, if  fragmentation rather than reintroduction could explain
similarities in exploratory behavior, we would expect PSSF and
EVER birds to explore at similar rates. Rather, we predicted that
PSSF birds would be faster explorers than EVER (Table 1).  

Most studies assessing the effects translocation may have on
behavioral traits have focused on the time periods just before or
just after translocations were performed (Bremner-Harrison et al.
2004, May et al. 2016). Translocation has effectively restored
scores of avian populations (Seddon et al. 2007), but the long-
term effects have not been monitored regularly despite repeated
calls for long-term studies of reintroduced populations (Smith
and Blumstein 2013, Richardson et al. 2017). To our knowledge,
this is the first assessment of exploratory behavior in a wild bird
population approximately five generations after restoration of the
population to a portion of its former range.

METHODS

Study species
The Brown-headed Nuthatch (Sitta pusilla) is a cavity-nesting,
sedentary bird that maintains year-round territories and lives in
social groups of 1-5 birds. Nuthatches exhibit a range of complex
behaviors that include cooperative breeding (Cox and Slater
2007), seed caching (Yaukey 1995), social grooming (Cox 2012),
male-female duets (J. Cox, unpublished manuscript), and tool
usage (Gray et al. 2016). Nuthatches are declining in many parts
of their range (Sauer et al. 2019). Habitat loss and fragmentation
have led to the extirpation of several populations (Withgott and
Smith 1998, Lloyd and Slater 2007) and also affected genetic
structure within extant populations (Haas et al. 2010, Han et al.
2019). Efforts to offset the effects of habitat loss and
fragmentation include two reintroduction attempts in south
Florida (Lloyd et al. 2009; Cox et al. in press) and another
reintroduction attempt now underway in the northwestern
portion of the formerly-occupied range (S. Kendrick, Missouri
Department of Conservation, pers. communication). Furthermore,
unmitigated climate change is predicted to displace nuthatches
from 95% of the current range by 2080, suggesting additional

reintroduction projects could be necessary in the future
(Matthews et al. 2011).

Study sites
Everglades National Park (EVER)  

Forty-two nuthatches were translocated to Long Pine Key in
EVER (25.40°N, 80.66°W; Dade Co.) from a population in Big
Cypress National Preserve (25.98N°, 80.98W°; Collier Co.)
beginning in 1998 (Lloyd and Slater 2007). Long Pine Key
contains ~4600 ha of second-growth South Florida slash pine
(Pinus ellioti var. densa) habitat surrounded by freshwater marsh,
tropical hardwood forests, and agricultural areas that are not used
regularly by the nuthatch (Lloyd et al. 2009, Cox et al. 2012).
Patches of pine forest north of EVER that historically connected
this site to other nuthatch populations have disappeared as a result
of human development. EVER is functionally isolated at the
southern-most periphery of Brown-headed Nuthatches’ range as
a result of fragmentation (Slater 2001, Han et al. 2019).
Demography in this reintroduced population was monitored for
several years (Lloyd et al. 2009) but was suspended in 2004 when
short-term goals were met (offspring produced successfully bred,
population size increased annually, and demographic metrics were
similar to the donor population; Lloyd et al. 2009).  

Picayune Strand State Forest (PSSF)  

PSSF (26.00°N, 81.44°W; Collier Co.) in southwest Florida is ≤
60 km west of the original donor population and also dominated
by second-growth South Florida slash pine interspersed with
subtropical cypress strands and hardwood swamps that are not
used by nuthatches (Walls et al. 2014). We used PSSF as a
surrogate for the original source population used in the EVER
reintroduction because the special equipment (swamp buggies)
and staff  support needed to sample at Big Cypress were not
available. An analysis of genetic structure found that nuthatch
populations in southwest Florida (PSSF, BCNP, and others) were
genetically homogenous (Han et al. 2019). We conducted
sampling on the Belle Meade tract (> 5800 ha) which is bordered
by major highways to the north and the south, ranches, and the
fast-growing city of Naples to the west (Fl. Forest Service 2008).
PSSF adjoins a number of large conservation holdings that
support other nuthatch populations; however, corridors and
suitable habitats in the region are heavily bisected by residential/
agricultural developments, forested wetlands, and open marshes
that nuthatches do not use.  

North Florida properties (NFLA)  

We conducted sampling on private properties in the Red Hills
region of NFLA (30.66°N, 84.21°W; Leon and Jefferson Cos.).
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NFLA properties are located closer to the core of this species’
range within a vast, continuous expanse (~176,000 ha) of forest
dominated by mature longleaf (P. palustris), loblolly (P. taeda),
and shortleaf pines (P. echinata) within intervening fields (< 30%),
hardwood forests, and residential areas. NFLA is well-connected
to numerous large, suitable habitat patches, and historical logging
and human development have been slower and less extensive than
in south Florida (Snyder et al. 1990, Moore 2013).

Capture methods
Nuthatches were lured into mist nets using recorded conspecific
male and female vocalizations mixed with Eastern Screech-Owl
(Megascops asio) vocalizations. The same vocalization mix was
used across all sites and broadcast through an MP3 player (Cox
and Slater 2007). Netting procedures were also the same (6 m mist
nets hung 0.5-2.0 m above ground by aluminum poles) with
sampling locations selected opportunistically based on habitat
conditions and the detection of nuthatches during a 3-min
playback period conducted prior to each capture attempt. We
targeted individuals that responded within 6-min (one repeat of
3-min playback) and revisited areas where birds were not detected
or did not respond aggressively on different days. Capture
locations were also separated ≥ 800 m to minimize pseudo-
replication (the width of approx. 4 territories; Cox and Slater
2007). Sampling was conducted in the post-breeding season from
May to July 2018.  

All individuals were captured between 0700 and 1140 and marked
with a unique federal band (US Geological Survey Permit 22446;
National Park Permit EVER-2018-SCI-0042). A small blood
sample (20-40 μl; avg. mass of adult nuthatch = 10 g) was taken
from the brachial vein (Han et al. 2019), and a combination of
genetic, morphometric, and plumage characteristics was used to
estimate age (adult or hatch year) and sex (Matthysen 2010, Tietze
and Martens 2009, Li et al. 2010). Blood samples for a subset of
individuals (n = 22) were analyzed to determine sex (R. Kimball
and M. Zhang, University of Florida). The subset of individuals
sexed molecularly (n = 22) included 8 females (n = 2 and 6 for
EVER and PSSF, respectively) and 14 males (n = 5 and 9 from
EVER and PSSF, respectively). The adults and juveniles sampled
across sites were also evenly distributed with 21 adults (n = 7, 8,
and 6 from EVER, PSSF, and NFLA, respectively) and 30
juveniles (n = 10, 9, and 11).  

Behavioral trials were then performed using either solo birds or
individuals tested sequentially in cases where multiple captures
occurred (n = 3, 4, and 6 for EVER, PSSF, and NFLA,
respectively). Most instances of multiple captures were 2
individuals, but there was also one site at each location where 3
birds were captured and tested. At sites with multiple captures,
the amount of time between the first capture and subsequent
captures varied from 0-min (two birds caught and extracted at the
same time, n = 3) to 16-min. We only held 2 birds at any given
time; at sites with 3 captures, the third individual was never
captured before we released the first. In some instances (n = 6; 1,
3, 5 for EVER, PSSF, NFLA), a bird vocalized in the chamber
while another was being held nearby which may have affected the
behavior of the second individual. Holding time might also have
influenced behavior. The potential effects that multiple captures
may have had on results were assessed by comparing these
captures with randomly selected captures of single birds.

Novel-environment evaluations
We assessed exploratory behavior using the “novel-environment”
evaluation in which individuals were released in a closed,
unfamiliar environment (Verbeek et al. 1994, Dingemanse et al.
2002). To collect samples efficiently among distant field sites, we
used a portable observation chamber based on designs used by
Kluen et al. (2012) and Polekoff (2018). The body of the chamber
was an opaque plastic bin (45 x 45 x 60 cm) with ventilation holes
drilled in a 10 cm x 10 cm grid (Fig. 1). A flat sheet of clear, acrylic
Plexiglass (75 x 45 cm) with four 2.5 cm holes drilled in each corner
covered the chamber. Four PVC tubes were inserted into the
corner holes and used to hold a camera (Vivitar DVR786HD HD)
approximately 75 cm directly above the chamber. Two pine dowels
(approx. 90 cm long) were placed in the chamber in an X formation
and 50 cm apart (low and high perches). Tape was affixed to each
stem every 20 cm to define 8 possible positions where individuals
might perch. The bottom of the chamber and the point where the
two stems crossed were scored as additional perch positions (n =
10 positions). Once individuals were placed in the chamber, we
covered the PVC tubes, camera, and chamber with a white sheet
to mask all external features during the trial (Huang et al. 2012).
Each bird was video recorded continuously for 10 minutes and
immediately released; total handling time did not exceed 22
minutes. Ten minutes is commonly used in similar assays to define
the novel environment exploration period (Drent et al. 2003,
Kozlovsky et al. 2014, Devost et al. 2016).

Fig. 1. Exploratory chamber. External (left) and internal
(right). Red circle indicates camera.

Quantifying behavioral activities
Behavioral activities were scored after a settlement period that
ended when an individual perched in one place for ≥ 20 sec and
ceased rapid flights and alarm calling (Kluen et al. 2012). Latency
to settle was quantified as the time that elapsed before individuals
perched ≥ 20 sec. Behavioral assessments were subdivided into
two consecutive 3-min observation periods to evaluate variation
over time (Kluen et al. 2012, Thompson et al. 2018). Five
individuals (n = 2 from EVER; 1 from PSSF; 2 from NFLA) did
not settle in ≤ 4-min and were not included in our analyses due to
the 10-min time limit. The 3-min bins used here allowed us to
assess within-trial changes in exploratory behavior as well as
potential habituation that might occur as a result of increased
holding time (Kluen et al. 2012, Thompson et al. 2018).  

The novel-environment test yields multiple measures of
exploratory behavior under the assumption that animals with
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different behavioral types will move differently in novel cage
environments (Russell 1983, Dingemanse et al. 2004). Following
Cornelius et al. (2017) and Dingemanse et al. (2002), we recorded
three distinct activities commonly linked to exploratory behavior:
the number of flights/hops, the number of scanning events (head
movement ≥ 90 degrees), and total positions taken. Additionally,
we recorded the number of times each individual pecked an object,
swiped its bill on an object, or preened. We also counted whether
or not a bird vocalized in addition to time spent gaping during
trials as potential measures of stress (Sieving et al. 2010). Vocal
output has also been linked to exploratory behavior in other
species (Guillette and Sturdy 2011, Ramos et al. 2021a). We noted
some birds dropped to the bottom of the cage while others did
not, so we recorded the time (sec) individuals spent on or below
the lower perches (hereafter “time low”) to identify these different
movement patterns within the chamber (Kluen et al. 2012).
Scanning and vocalizing are thought to be important behaviors
birds use to acquire information about their surroundings (Lima
and Zollner 1996, Huang et al. 2016); maintenance behaviors
(preening, pecking, and bill swipes) are thought to indicate
comfort in a novel environment (Clark 1970, Nephew and Romero
2003, Walther and Clayton, 2005); gaping is indicative of stress
(Groombridge et al. 2004).

Statistical analyses
Exploratory activities  

We analyzed exploratory behavior in two steps with a focus on
three commonly used metrics for exploratory behavior: counts of
flights/hops, head turns (scans), and the number of positions
taken in the pen. In the first step, we combine the three key
measures into an exploratory score that could identify faster or
slower exploring birds using a factor analysis. Factor analysis
combines related metrics to represent a latent variable that
underlies those metrics (in this case exploratory rate; faster to
slower). One significant and normally distributed factor score was
obtained (eigenvalue = 1.83) where all three measures were
positively loaded on the factor score (0.62 for scans, 0.80 for flights
and hops, and 0.85 for positions; Tables 2, 3). Individuals that
had higher scores were more active during exploration of the
chamber. See Table A1 for boxplots of raw factors summarized
by location and time period. In step two, we used a generalized
linear model (GLM; Gaussian distribution; Zuur et al. 2009) to
analyze location and temporal effects on the exploratory factor
score (see below for model parameters).

Table 2. Summary statistics for factor analysis (flights & hops,
scans, and positions). LR test: independence vs. saturated, Χ2 (3)
= 133.3. Prob > Χ2 = 0.00.
 

Factor Eigenvalue Difference Proportion Cumulative

Factor 1 1.83 1.90 1.15 1.15
Factor 2 -0.07 0.09 -0.05 1.10
Factor 3 -0.16 . -0.10 1.00

Maintenance activities   

Preening, pecking, and bill-wiping were each somewhat rare,
therefore we added up counts of all three behaviors for each
individual in each time period and used the total count as an
indicator of maintenance activities. As the counts were zero

inflated (a number of birds did none of the three), we applied a
GLM with a negative binomial link function to test for location
and time effects (see below for model parameters).

Table 3. Factor loadings and unique variances on the retained
factor (bottom panel).
 
Variable Loadings Uniqueness

Flights/hops 0.80 0.35
Scan 0.68 0.54
Positions 0.85 0.29

Stress indicators: calling, gaping, and seconds perched low in the
chamber  

Calling behavior was represented by a binary variable (called or
not), so we applied a GLM with logit link function. Seconds
spent gaping, and seconds spent low in the cage were zero-
inflated count metrics, so we applied a GLM with a negative
binomial link function for these two measures (Maxwell et al.
2018).  

GLM specifications  

All GLMs included location (EVER, PSSF, and NFLA) and
time period (1st 3-min and 2nd 3-min of observations) and an
interaction term (location x time period) as fixed effects. We used
an individual bird ID as a random effect to account for the
repeated measures across the two time periods. To conduct
pairwise comparisons of factor levels (3 locations and 2 time
periods) we ran marginal contrasts using P < 0.05 as an
indication of significant differences among sites and time
periods. However, given the high inter-individual variability (e.
g., see SD measures in Tables A1.1, A1.2), we also deemed 0.05 <
P < 0.10 on any tests to be indicative of potentially significant
trends. GLMs were performed using STATA version 16.1.  

Assessing potential biases  

To assess any effects associated with the capture of multiple birds
at one location rather than captures of a single bird, we calculated
differences in behavioral measures for each individual caught
with a group and compared these to differences observed among
10 paired samples of 40 randomly selected individuals. The
capture of males/females and different age classes also varied
among sites but could not be evaluated in GLMs because of
missing genetic sex at some sites. To assess the potential effects
this might have had, we used nonparametric multivariate
analysis of variance with 1000 permutations and the “npmv”
package in R (Burchett et al. 2017). We tested for an overall effect
of sex and age among populations as well as relative effects across
groups (e.g., whether females' scores differed from scores selected
randomly). We used a one-way Kruskal-Wallis test to assess
variation in latency to settle among sex and age cohorts (the only
metric with one sample per individual). We also quantified the
absence of movement among populations based on the
proportion of individuals that sat stationary in a single position
during each 3-min observation period. These assessments were
conducted in R version 3.4.2 (R Core Team 2017).  

Based on known sex and age data, birds caught at the same time
at the same location were likely family groups. The composition
of groups caught together and of known sex and age is: male

http://www.ace-eco.org/vol17/iss1/art7/


Avian Conservation and Ecology 17(1): 7
http://www.ace-eco.org/vol17/iss1/art7/

and female pair with 1 male offspring (1 EVER), adult female
with male offspring (1 PSSF), and 5 groups of juvenile siblings:
2 males with 1 female (EVER), 2 females with 1 male (PSSF), 1
pair of brothers (PSSF), and male-female siblings (1 PSSF, 1
EVER). Based on age, NFLA birds were likely also family groups:
2 adults with 1 offspring, 1 adult with 1 offspring, and 4 pairs of
juveniles, likely siblings. While we did not assess relatedness,
juvenile nuthatches, particularly philopatric males, often remain
on the natal territory for months after fledging (Cox and Slater
2007).

RESULTS

Descriptives and bias tests
We quantified exploratory behavior for 17 individuals from each
population (n = 51). Individuals from all populations explored
the chamber thoroughly, and ≥ 4 individuals from each population
visited all 10 possible positions within one of the 3-min
observation periods. Mean time to settle (41 s ± 36 s) did not differ
among populations (Kruskal-Wallis Χ2 = 1.4, P = 0.49). Sex did
not have an effect on exploratory behavior (F3.5, 61.4 = 0.77, P =
0.53) nor did age (F4.0, 189.4 = 0.31, P = 0.87). We also found no
evidence of capture bias. The P-values for all 10 Wilcoxon signed
rank tests were ≥ 0.15, suggesting birds captured together (and
tested sequentially) displayed behavioral variation similar to that
of birds captured individually. No differences in gaping behavior
between locations or time periods were detected. See Tables A1.1,
A1.2 for descriptive statistics on raw behavioral measures.

Exploratory activities
A clear but non-significant trend toward faster exploration
occurred from EVER to PSSF to NFLA populations (Fig. 2).
The model interaction term and marginal contrasts show that
NFLA birds explored significantly faster than EVER birds (β=
0.6, SE = 0.3, Z = 2.5, P = 0.01 and Χ2 = 4.0, P = 0.04; Tables 4,
5). Activity differences between NFLA and EVER were most
pronounced in period 2 (Χ2 = 8.4, P = 0.004; Table 6), when NFLA
birds significantly increased exploratory activity (Χ2 = 5.8, P =
0.02; Table 7). There was no significant difference in exploratory
activity between EVER and PSSF (β = 0.3, SE = 0.3, Z = 1.3, P 
= 0.2). EVER and PSSF maintained the same level of activity
over both time periods (Table 7), though we observed a decreasing
trend in EVER activity during period 2 (Fig. 2).

Other activities
PSSF birds conducted significantly fewer maintenance activities
than birds at the other two sites (z = -2.27; P = 0.02; Fig. A2.1,
Table A2.1(a)), but marginal contrasts were not significant (Tables
A2.1(b-d)). PSSF birds spent more time at the bottom of the cage
than other populations (z = 2.1; P = 0.03 and Χ2 = 3.16; P = 0.07;
see Fig. A2.2, and Tables A2.2(a, b)), particularly during period
2 (marginal contrast: Χ2 = 3.0; P = 0.08; Table A2.2(c)), but within
each location, periods did not differ (Table A2.2(d)). NFLA birds
called more often than others (z = 1.68; P = 0.09; Fig. A2.3, Table
A2.3(a)) and marginal contrasts revealed that this trend occurred
primarily in period 1 when NFLA birds called more than EVER
birds (Χ2 = 3.32; P = 0.07; Table A2.3(c)). Marginal contrasts
between locations and by period within each location were not
significant (Tables A2.3(b, d)).

Fig. 2. Marginal predicted mean exploratory (factor) scores
based on the mixed effects GLM (Table 3), with 95%
confidence intervals, for nuthatches tested at the three locations
and in each of the two time periods. Increasing scores indicate
‘faster’ exploration: more flights and hops, more positions
visited, and more scans (head turns). See text for location
abbreviations. NFLA birds explored faster than EVER birds
(Table 4) but this is primarily due to period 2 differences (Table
5). NFLA birds significantly increased exploration in period 2
(Table 6) but exploration was similar in the two sample periods
for EVER and PSSF birds.

Table 4. Mixed-effects GLM results with main effects and
interaction terms for Location (1= EVER, 2 = PSSF, 3 = NFLA)
and Period (1st or 2nd sample period in the exploratory chamber)
and bird ID as the random effect, and the exploratory (factor)
score as the response variable. Z tests refer to comparisons of
factor levels to reference levels (as indicated by the numbers in
column 1).
 
Factor Coef. SE Z P>|z| 95% CI

Location
 2 vs 1 0.05 0.29 0.17 0.87 (-0.53, 0.62)
 3 vs 1 0.21 0.29 0.70 0.48 (-0.37, 0.78)
Period -0.20 0.18 -1.11 0.27 (-0.56, 0.16)
Location by Period
 22 vs 1 1 0.33 0.26 1.26 0.21 (-0.19, 0.84)
 32 vs 1 1 0.64 0.26 2.49 0.01* (0.14, 1.15)
_cons -0.15 0.21 -0.70 0.48 (-0.55, 0.26)
Bird ID
var(_cons) 0.45 0.12 - - (0.26, 0.76)
var(e.explore) 0.29 0.06 - - (0.19, 0.42)

DISCUSSION

Slow-exploring Everglades nuthatches
A Brown-headed Nuthatch population reintroduced to EVER 20
years ago contained the slowest exploring individuals evaluated
here. EVER nuthatches were significantly slower than NFLA
birds (P = 0.01; Fig. 2, Table 4), particularly in the second
observation period (P = 0.004; Table 6). PSSF nuthatches sampled
from a population near the original source population used for
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the EVER reintroduction explored at rates intermediate to EVER
and NFLA, though these differences were not statistically
significant. We observed a trend toward faster exploration from
EVER to PSSF to NFLA (Fig. 2), among other behavioral
differences.

Table 5. Marginal contrasts for location effects on exploratory
(factor) score factor.
 
Contrast df Chi2 P > Chi2

Location
 (NFLA vs. EVER) 1 4.03 0.04*
 (PSSF vs. EVER) 1 0.65 0.42
Joint 2 4.08 0.13

Table 6. Marginal contrasts for location effects within each
period.
 
Contrast df Chi2 P > Chi2

Location@Period
 (NFLA vs EVER) 1 1 0.49 0.48
 (NFLA vs EVER) 2 1 8.40 0.004*
 (PSSF vs EVER) 1 1 0.03 0.87
 (PSSF vs EVER) 2 1 1.64 0.20
Joint 4 10.26 0.04*

Table 7. Marginal contrasts for period differences within each
location.
 
Contrast df Chi2 P > Chi2

Period@Location
 (2 vs 1) EVER 1 1.23 0.27
 (2 vs 1) NFLA 1 5.80 0.02*
 (2 vs 1) PSSF 1 0.46 0.50
Joint 3 7.49 0.06

As in this study, others find that fast-exploring individuals
typically vocalize more than slow (Guillette and Sturdy 2011,
Kerman et al. 2016, Ramos et al. 2021a; but see Cornelius et al.
2017). The best current interpretation of this pattern may be that
slow explorers are likely to be more predation-risk averse; as such,
less vocalizing may help avoid predator detection (Burnett and
Sieving 2016). Maintenance behaviors are often associated with
security and relaxation (Nephew and Romero 2003), especially
following disruptive events (capture). Preening was positively
correlated with proactive individuals in social psittacids (van
Zeeland et al. 2013, Ramos et al. 2021b) and chickens (van
Hierden et al. 2002). Perching above ground is also more typical
of nuthatches than sitting on the ground, suggesting that EVER
and NFLA birds were both less stressed than PSSF birds by the
novel environment.  

We found intra-population variation in exploratory behavior
consistent with many of our predictions. Although our prediction
that PSSF would be faster explorers than EVER was not
supported statistically, we found clear indications of slower
exploration in EVER, as well as an effect of fragmentation

consistent with other theories (Fahrig 2007, Cornelius et al. 2017).
Despite strong differences between NFLA and EVER, pairwise
contrasts of PSSF to NFLA/EVER were not statistically
significant, pointing to underlying variation between PSSF and
EVER that may be the result of reintroduction. PSSF shared some
traits with both populations. Similarities between PSSF and
EVER are likely adaptive responses to fragmentation, and
similarities between PSSF and NFLA are consistent with
predictions about never-reintroduced populations. Additionally,
exploratory behavior in EVER and NFLA was especially
divergent, suggesting that the differences were naturally expressed
and may have arisen as a result of reintroduction.

Potential biases
While reasonable, the potential for personality-related sampling
bias at the initial capture of birds translocated to EVER seems
unlikely given that Slater (2001) captured randomly selected pairs
at nighttime roosts. These capture procedures should lessen any
bias toward translocation of a specific personality type (e.g.,
aggressive/bold individuals responding to playback; Both et al.
2005, Gabriel and Black 2012). However, capture procedures used
here (mist netting birds using conspecific vocalizations) may have
biased samples toward bolder, more exploratory individuals (Biro
and Dingemanse 2009). Apparently, slow-exploring birds can
identify mist nets and may avoid capture (Stuber et al. 2013),
though evidence of biased responses to playback is not uniform
among birds (Amy et al. 2010, Jacobs et al. 2014). We targeted
individuals that were most responsive to playback in each
population, focusing on birds that responded within 6-min of
beginning playback (one repeat of 3-min playback). However, if
a bias toward boldness did occur, it would favor relatively more
fast-exploring individuals across all populations given the positive
correlation between boldness and fast exploration (Reale et al.
2010). This would make our assays conservative in the sense that
the boldest individuals in EVER were still slower explorers than
the boldest birds in the other two populations (minimizing type
I error).

Underlying causes
Based on better survival and performance of slow-exploring
individuals in translocations of birds to novel habitat patches we
predicted that EVER nuthatches would be slower explorers than
the other sites sampled. We also predicted that NFLA birds from
continuous habitats that have not encountered barriers to
movement or risky edges would be the fastest explorers (Fahrig
2007, Cornelius et al. 2017). Evidence that reactive, slow explorers
fare better when moved to a strange place is accumulating
(Geffroy et al. 2020, Maspons et al. 2020). Slow explorers are
often better at gathering and utilizing novel sources of
information (Guillette et al. 2011), they exhibit flexibility in
response to sudden environmental changes (Coppens et al. 2010,
Herborn et al. 2014), they disperse more slowly and over shorter
distances (Cote et al. 2010), they act to minimize risk (Hall et al.
2015), and (because of lower activity and conspicuousness) they
are better at avoiding predation (McDougall et al. 2006, Bremner-
Harrison et al. 2004, Huang et al. 2015, Cornelius et al. 2017,
Smit and van Oers 2019). These traits would benefit birds in a
strange new place. However, in 20 years a number of other genetic
and resource-related factors might also favor or promote slow
exploration in the reintroduced Everglades population.  
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Genetic causes  

Populations established via translocation are vulnerable to
stochastic and deterministic forces that can yield outsized effects
in small, newly established populations (Gregory et al. 2012).
Potential stochastic factors include changes brought about by
inbreeding, genetic drift, and other factors that can lower genetic
and behavioral diversity within small populations, as well as
potential biases associated with the individuals initially captured
and translocated. The EVER population was reintroduced in part
because recolonization was unlikely given the distance to other
populations (~40km, Slater 2001); this isolation has likely also
precluded gene flow and exacerbated a loss of genetic diversity
(Frankham 2015) in this dispersal-restricted species (Cox and
Slater 2007). Indeed, a nuthatch population similarly isolated by
freshwater marsh and grasslands of the St. John’s River were the
most genetically distinct among the 13 populations sampled by
Han et al. (2019). Only 26 nuthatches (54% of translocated cohort)
established territories after their release at EVER. No breeding
occurred in the first year post-release, only 16 individuals were
observed ≥ 2 years, and adult survival within the population fell
sharply following a major storm (Lloyd et al. 2009). While the
population has since rebounded (approx. 100 individuals in 2018),
the effective population size of the reintroduced population likely
fell within the range of 10-20 individuals, which may have resulted
in pronounced stochastic effects, including emergence of slower
explorers by chance (Griffith et al. 1989, van Oers et al. 2004b).  

Alternatively, it is possible that the founding population was
composed of slower explorers. If  exploratory behavior is heritable
in this species (and assuming behavioral variation in PSSF is
similar to the original source), we would expect descendants to
also retain some characteristics of slow exploration (van Oers et
al. 2004a), which is likely reinforced by the lack of gene flow to
EVER. The similarities observed among PSSF and EVER may
therefore reflect a genetic component of exploratory behavior in
Brown-headed Nuthatches rather than the process of
reintroduction. However, the observed trend toward slower
exploration in EVER suggests both factors (among others) are
likely at play; larger sample sizes and repeated testing (including
at the time of reintroduction) would aid in explaining the limited
differences among these populations; further genetic assessments
are underway.  

Variation in spatiotemporal resources  

Habitat conditions, predators, food, and nesting resources also
likely varied among the sites and can influence exploratory
behavior in birds (Biz et al. 2017). We did not quantify variation
in these spatiotemporal resources, but we completed sampling
within a narrow timeframe during the post-breeding period in an
effort to minimize potential seasonal effects. Food resources are
thought to be less plentiful for nuthatches during winter months
(Morse 1967), a season in which food resources have been shown
to influence personality types in other birds. Dingemanse et al.
(2004) found that fast-exploring male and slow-exploring female
Great Tits (Parus major) experience greater reproductive success
following winters with rich food resources while slow males and
fast females do better following food-sparse winters. Winter food
resources were likely most similar for the two south Florida
populations, and both of these populations were affected by a
hurricane 7 months before we collected our samples. Additionally,

high-intensity wildfires in PSSF approximately 5 months before
sampling further reduced the pine canopy at that site which may
explain the disproportionate amount of time PSSF nuthatches
spent perched low; while nuthatches preferentially move and
forage high in the canopy, the altered landscape may have led
PSSF nuthatches to perceive low areas within the chamber as
“safe” (Brown and Sherry 2008). White-breasted Nuthatches
(Sitta carolinensis) exposed to higher winds at newly-created
habitat edges began to forage lower on trees than inland birds
(Dolby and Grubb 1999). The hurricane may have also reduced
food availability (e.g., stripped pine cones, reduced insect
abundance) which was the cause of significant population
declines in EVER in the years following multiple hurricanes in
2005 (Lloyd et al. 2007). Food scarcity and a reduction in canopy
cover and other habitat structures may have affected exploratory
behavior in PSSF and EVER, though, such disturbances are
regular occurrences for nuthatches in Florida. Regular, low-
intensity fires and occasional hurricanes also create nesting snags
and help maintain an open mid- and understory. The interaction
between spatiotemporal conditions and exploratory behavior can
influence fitness outcomes (Haage et al. 2017, Maspons et al.
2020), suggesting a pathway for the maintenance of exploratory
types in reintroduced populations over evolutionary time.  

Social environments  

Social behavior can be fundamental to reintroduction success and
many translocations fail when individuals leave the release site
and perish or become isolated from conspecifics (Rowe and Bell
2007, Mihoub et al. 2011, Debeffe et al. 2013, Richardson et al.
2015). Individuals that disperse away quickly risk increased
exposure to novel predators (Le Gouar et al. 2012, Berger-Tal and
Satlz 2019) and unsuitable landscapes (Sih et al. 2011), and lose
access to crucial social information at a time when rapid learning
is essential to survival (Sih and Del Giudice 2012). In the early
years of a restoration effort when conspecific densities are low,
dispersal-averse, slow-exploring individuals that remain near the
release site benefit from group vigilance and defense, transmission
of social information such as resource location, and are able to
form social bonds necessary for reproduction and survival (Cote
et al. 2010, Reale and Dingemanse 2010). For example, juvenile
Hihis (Notiomystis cincta; another cooperative breeder) that
broadened their social affiliations following translocation were
more likely to survive their first year than individuals that did not
make this adjustment (Franks et al. 2019). The loss of fast-
exploring individuals also results in decreased behavioral (and
likely genetic) diversity of the founding population (Reale and
Montiglio 2020), which could explain the predominance of slow
explorers in EVER today.  

Translocated social species may need to reconfigure group
structures after their release (Maldonado-Chapparo et al. 2018).
Though exploratory behavior and sociability are less explicitly
linked than exploratory behavior and boldness/aggression (i.e.,
sociality is not on the “proactive-reactive” continuum), they are
often closely correlated (albeit context-dependent; Reale et al.
2007, Cote et al. 2010). For example, proactive, fast-exploring
Great Tits (Parus major) also tend to be less “socially bound” and
more likely to disperse than slow explorers (Carere et al. 2013).
Variation in the manner in which fast/slow explorers socialize
might therefore also affect individuals’ ability to form groups, and
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was likely an important component of nuthatch establishment in
EVER (Reale et al. 2010). While there are important differences
between exploratory-related dispersal and sociability-related
dispersal (Cote et al. 2010), in general, slow explorers (which tend
to be less aggressive), form long-lasting, stable social bonds and
maintain group cohesion while fast explorers tend to have shallow
interactions with many individuals and engage in more agnostic
displays (Verbeek et al. 1996, Cote et al. 2010, Aplin et al. 2013).
Socialization and exploratory behavior can also co-vary with
population densities. In Western Bluebirds (Siala mexicana),
highly social individuals secure more extra-pair fertilizations and
fledge more offspring than dispersive, aggressive birds when
population densities are high (Duckworth 2006).  

Brown-headed Nuthatches appear to make settlement decisions
in part based on the presence of conspecifics, a characteristic
found in other birds (Fletcher 2007, Aplin et al. 2012). Some
dispersing males preferentially settle in male-saturated habitats
even though suitable habitats and breeding opportunities are
available nearby (Cox et al. 2019), suggesting the presence of
conspecifics may serve as an indicator of habitat or mate quality
(Reed and Dobson 1993, Clobert et al. 2009). This signals the
advantages of sociality in nuthatches likely outweigh the costs of
competition or dispersing to find novel resources. Reintroduction
to EVER and the subsequent bottlenecks likely enforced a social
selective pressure (Snijders et al. 2014) that may have favored a
less-exploratory but more social phenotype (Goldenberg et al.
2019), thus resulting in slow-exploring nuthatches to this day.
Alternatively, slow exploration may be the result of socially-
transmitted, learned risk-avoidance due to experience with
habitat edges (Reader 2015, Cornelius et al. 2017), though such
learned behaviors can become canalized when reinforced by
selection (Shefferson et al. 2018).  

Cooperative breeding  

Unique characteristics of nuthatch breeding biology may also
favor retention of different exploratory phenotypes. Cooperative
breeding appeared early in the EVER reintroduction effort (Cox
et al. in press) and likely was associated with the retention of
juveniles with lower exploratory behavior (Cornelius et al. 2017,
Cusick et al. 2018). Personality-dependent dispersal has been
documented in a variety of other cooperatively breeding birds
(Cote et al. 2010, Duckworth et al. 2015, Botero-Delgadillo et al.
2020) and delayed dispersal is one of the precursors to cooperative
breeding (Ekman et al. 2004). Slow-exploring individuals that
forgo dispersal and instead provision young produced by others,
defend nests, and enhance group productivity collectively raise a
cohort of future potential mates and helpers (Kokko et al. 2001,
Teunissen et al. 2019). Expósito-Granados et al. (2016) found that
exploratory phenotype mediates helping behavior in Iberian
Magpies (Cyanopica cooki); fast-exploring males that dispersed
to join an unfamiliar group were more likely to be helpers, while
fast-exploring males that remained in the natal territory were
more likely to be breeders. Division of helping labor (i.e.,
provisioning chicks vs. nest defense) can also be influenced by
behavioral phenotypes (Bergmuller and Taborsky 2010, Le Vin
et al. 2011, Loftus et al. 2021); fast-exploring Superb Fairy-Wrens
(Malurus cyaneus) and Great Tits (Parus major) acting as helpers
exhibited more nest defense behaviors, while slow-exploring Great
Tits provisioned young (Hollander et al. 2008, van Asten et al.

2016). Further, Hammers et al. (2019) found that female
Seychelles Warblers (Acrocephalus sechellensis) that had helpers
senesced later than unhelped females, and Dingemanse et al.
(2020) similarly found slow-exploring Great Tits senesced later
than fast explorers, potentially resulting in higher lifetime
productivity. We do not have data documenting whether slow-
exploring nuthatches are more likely to participate in cooperative
groups, but these studies suggest a self-reinforcing pathway to the
maintenance of slow exploratory phenotypes in EVER may be
tied to cooperative behavior.

CONCLUSION
Our study suggests that changes in behavior of reintroduced
populations are likely to occur and may be predictable. For
example, if  fast explorers disperse further (Dingemanse et al.
2003, Reale and Montiglio 2020) than slow explorers, we would
expect higher retention of slow explorers near the release site in
other reintroduced populations. If  the prevalence of slow
explorers we observed in the reintroduced population relates to
factors associated with cooperative breeding, we might expect to
see a preponderance of slow explorers when other cooperative
breeders are reintroduced but not when non-cooperative breeders
are reintroduced. Another factor that should yield a predictable
outcome is the tendency for slow explorers to fare better when
subjected to environmental and situational stress (Nicolaus et al.
2015, Martins et al. 2007, Cornelius et al. 2017). Conversely, if
random forces such as genetic drift, demographic stochasticity,
or weather events led to changes in the prevalence of exploratory
phenotypes, we should expect to see fast explorers become more
prevalent in some reintroduced populations. Comparison of the
behavioral phenotypes present in reintroduced and source
populations might help to target the personality types best suited
for early restoration phases when translocated individuals must
explore and settle down in novel areas. More broadly,
reintroductions feature low-density social environments that
provide opportunities for assessing density-dependent behavioral
variation.  

Only 55.7% of the 524 attempts to reintroduce wild-caught birds
have led to successful reproduction after the initial translocations
(Lincoln Park Zoo Avian Reintroduction and Translocation
Database 2020 http://www.lpzoosites.org/artd/). Among birds,
the average length of post-release monitoring is 8.5 years (Bubac
et al. 2019). This timeframe allows benchmarks on survival and
reproduction to be cataloged, but it may not be sufficient to assess
potential behavioral changes that might arise as a byproduct of
translocation. Assessing behavioral variation generations after
establishment could provide key insights into the resilience of
reintroduced populations (Watters and Meehan 2007), the
evolutionary consequences of behavioral differences (Reale et al.
2007, Smith and Blumstein 2013), and the emergence of
evolutionary trajectories as populations adapt to novel
surroundings (Stockwell et al. 2003, Merrick and Koprowski
2017). Moreover, behavior can be a cost-effective way to monitor
warning signs of population decline (Wildermuth et al. 2012,
Berger-Tal and Saltz 2019). Our results also point to the potential
importance of anticipating the effects that stochastic and
deterministic factors might have on the behavioral diversity of
translocated populations.
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Table A1.1. Descriptive statistics (μ ± 1 SD) for latency to settle (sec) and three key exploratory 

behaviors (flights/hops, scanning, and total positions) across three Brown-headed 

Nuthatch populations in Florida and Georgia, USA. EVER = reintroduced Everglades 

population; PSSF = Picayune State Forest population (nearby source population); 

NFLA = geographically distinct population in Red Hills region of north Florida. 

Periods refer to two consecutive 3-min observation periods. Time low (sec) represents 

time spent in the bottom 20 cm of the exploratory cage. 

 

Sample  Behavior EVER PSSF NFLA 
     
Pre-scoring Latency to settle 48.9 ± 54.1 33.2 ± 31.0 39.9 ± 23.7 

First period Flights/hops 18.4 ± 18.7 20.8 ± 19.4 25.8 ± 23.2  
Scanning 108.8 ± 43.4 127.1 ± 55.6 147.3 ± 55.5  
Positions 5.7 ± 3.3 5.4 ± 3.2 5.6 ± 2.5  
Time low  57.4 ± 67.8 103.9 ± 73.6 37.3 ± 49.8 

Second period Flights/hops 17.0 ± 23.1 28.4 ± 28.6 39.5 ± 42.4  
Scanning 87.5 ± 49.8 138.4 ± 66.5 156.2 ± 56.0  
Positions 4.9 ± 3.5 5.3 ± 3.7 7.2 ± 2.4  
Time low 48.2 ± 67.6 102.5 ± 66.4 48.0 ± 50.0 

Total Observations Flights/hops 17.7 ± 21.2 24.6 ± 24.9 32.6 ± 35.1 
 

Scanning 98.2 ± 47.3 132.7 ± 61.8 151.8 ± 56.2  
Positions 5.3 ± 3.4 5.4 ± 3.4 6.4 ± 2.6 

  Time low 52.8 ± 66.8 103.2 ± 70.4 42.7 ± 50.3 

 

 

 

  



Table A1.2 Descriptive statistics (μ ± 1 SD) for all other recorded behaviors (counts) by 

population and observation period. 

 

Sample  Behavior EVER PSSF NFLA   
      
First period Preening 0.4 ± 1.2 0.5 ± 1.5 0.5 ± 1.1  

 Bill swipe 2.4 ± 4.5 1.1 ± 3.2 1.4 ± 3.9  

 Peck 0.7 ± 1.1 0.3 ± 0.8 0.1 ± 1.7  

 Gaping (secs) 61.4 ± 69.7 31.8 ± 46.0 67.2 ± 77.9  

 Vocalizations 1.8 ± 6.3 0.7 ± 1.6 0.9 ± 1.4  

Second period Preening 0.1 ± 0.2 0.4 ± 0.8 1.1 ± 1.4  

 Bill swipe 1.5 ± 2.5 1.8 ± 5.9 0.4 ± 0.9  

 Peck 1.9 ± 3.3 1.2 ± 2.8 2.5 ± 6.6  

 Gaping (secs) 70.3 ± 72.7 71.5 ± 79.0 84.0 ± 74.1  

 Vocalizations 2.1 ± 5.9 0.3 ± 0.8 1.6 ± 4.0  
Total Observations Preening 0.1 ± 0.2 0.4 ± 1.2 0.8 ± 1.3  

 Bill swipe 1.9 ± 3.6 1.4 ± 4.8 0.9 ± 2.9  

 Peck 1.3 ± 2.5 0.7 ± 2.1 1.4 ± 4.9  

 Gaping (secs) 65.8 ± 71.7 51.7 ± 67.9 75.6 ± 76.9  
  Vocalizations 1.9 ± 6.0 0.5 ± 1.3 1.3 ± 3.0   

      
 

  



 
 

Figure A1. Boxplots of exploratory score derived from factor analysis (Factor 1) by location 

during each 3-min observation period (first and second). Increasing scores indicate 

‘faster’ exploration: more flights and hops, more scans (head turns), and more positions 

visited. N = 17 birds/location for a total n = 51. See text for location abbreviations. 

 



APPENDIX 2 

 

Table A2.1(a). Mixed-effects GLM for summed counts of maintenance activities (negative 

binomial link function for zero-inflated counts) with main effects and interaction 

terms for Location (1= EVER, 2 = PSSF, 3 = NFLA) and Period (1st or 2nd sample 

period in the exploratory chamber) and bird ID as the random effect. Z tests refer to 

comparisons of factor levels to reference levels (as indicated by the numbers in 

column 1). 

 

Factor Coef. SE Z P>|z| 95% CI  

Location      

2 vs 1 -1.98 0.88 -2.27 0.02* (-3.71, -0.27) 

3 vs 1 -0.82 0.80 -1.02 0.31 (-2.39, 0.75) 

Period 0.18 0.38 0.47 0.64 (-0.56, 0.92) 

Location by Period      

22 vs 11 0.54 0.63 0.85 0.40 (-0.71, 1.78) 

32 vs 11 0.38 0.57 0.68 0.50 (-0.73, 1.49) 

_cons 0.31 0.55 0.55 0.58 (-0.78, 1.39) 

ID 

Var(_cons) 3.53 1.19 

 

- 

 

- 

 

(1.83, 6.85) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A2.1 (b). Marginal contrasts of maintenance activities among locations. 

 

Contrast df Chi2 P > Chi2 

Location    

(NFLA vs. EVER) 1 0.48 0.49 

(PSSF vs. EVER) 1 1.40 0.24 

Joint 2 1.79 0.41 

 

 

Table A2.1 (c). Marginal contrasts of maintenance activities for location effects within each 

period. 

 

Contrast df Chi2 P > Chi2 

Location@Period    

(NFLA vs EVER) 1 1 1.43 0.23 

(NFLA vs EVER) 2 1 1.18 0.28 

(PSSF vs EVER) 1 1 0.67 0.41 

(PSSF vs EVER) 2 1 0.27 0.61 

Joint 4 1.86 0.76 

 

 

Table A2.1 (d). Marginal contrasts of maintenance activities for period differences within each 

location. 

 

Contrast df Chi2 P > Chi2 

Period@Location    

(2 vs 1) EVER 1 0.20 0.66 

(2 vs 1) NFLA 1 0.96 0.33 

(2 vs 1) PSSF 1 1.03 0.31 

Joint 3 1.77 0.62 

  



 
Figure A2.1. Marginal predicted mean maintenance activities (summed counts of bill-wipes, 

pecks, and preens), with 95% confidence intervals, for nuthatches tested at the three 

locations and in each of the two time periods. See text for location abbreviations.  

  



Table A2.2 (a). Mixed-effects GLM for seconds spent low in the chamber (negative binomial 

link function for zero-inflated counts) with main effects and interaction term for Location (1= 

EVER, 2 = PSSF, 3 = NFLA) and Period (1st or 2nd sample period in the exploratory chamber) 

and bird ID as the random effect. Z tests refer to comparisons of factor levels to reference levels 

(as indicated by the numbers in column 1).  

 

lowSecs Coef. Std. Err. Z P>|z| 95% CI  

      

LocCD      

2 1.21 0.57 2.11 0.03* (0.09, 2.33) 

3 -0.26 0.58 -0.45 0.65 (-1.39, 0.87) 

      

2. Period -0.44 0.38 -1.16 0.25 (-1.19, 0.30) 

      

LocCD#Period      

2 2 0.57 0.52 1.10 0.27 (-0.44, 1.58) 

3 2 0.84 0.52 1.61 0.11 (-0.18, 1.86) 

      

_cons 3.24 0.42 7.73 0.00 (2.42, 4.06) 

/lnalpha -0.15 0.24 - - (-0.62, 0.33) 

      

ID 

Var(_cons) 1.72 0.57 

- -  

(0.89, 3.30) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A2.2 (b). Marginal contrasts for time spent low by location. 

 

Contrast df Chi2 P > Chi2 

Location    

(NFLA vs. EVER) 1 0.09 0.77 

(PSSF vs. EVER) 1 3.16 0.07* 

Joint 2 3.16 0.21 

 

 

Table A2.2 (c). Marginal contrasts of time spent low for location within period. 

 

Contrast df Chi2 P > Chi2 

Location@Period    

(NFLA vs EVER) 1 1 0.20 0.66 

(NFLA vs EVER) 2 1 0.82 0.37 

(PSSF vs EVER) 1 1 2.31 0.13 

(PSSF vs EVER) 2 1 3.03 0.08* 

Joint 4 4.45 0.35 

 

 

Table A2.2 (d). Marginal contrasts of time spent low for period within each location. 

 

Contrast df Chi2 P > Chi2 

Period@Location    

(2 vs 1) EVER 1 1.04 0.31 

(2 vs 1) NFLA 1 0.99 0.32 

(2 vs 1) PSSF 1 0.13 0.72 

Joint 3 1.96 0.58 

 



 
Figure A2.2. Marginal predicted mean number of seconds spent low in the exploratory cage, 

with 95% confidence intervals, for nuthatches tested at the three locations and in each 

of the two time periods. See text for location abbreviations.  

  



Table A2.3 (a). Mixed-effects GLM for vocalizations (logit link function; bird called = 1; did not 

call = 0) with main effects and interaction term for  Locations: 1= EVER, 2 = PSSF, 3 = NFLA 

and Period (1st or 2nd sample period in the exploratory chamber) and bird ID as the random 

effect. Z tests refer to comparisons of factor levels to reference levels (as indicated by the 

numbers in column 1). 

 

Factor Coef. SE Z P>|z| 95% CI  

Location      

2 vs 1 0.70 1.49 0.47 0.64 (-2.21, 3.61) 

3 vs 1 2.69 1.60 1.68 0.09* (-0.45, 5.83) 

Period 3.93e-17 1.22 0.00 1.00 (-2.38, 2.38) 

Location by Period      

22 vs 11 -1.39 1.76 -0.79 0.43 (-4.83, 2.05) 

32 vs 11 -1.44 1.62 -0.89 0.38 (-4.62, 1.74) 

_cons -2.94 1.37 -2.14 0.03 (-5.63, -0.25) 

ID 

Var(_cons) 6.72 5.82 

 

- 

 

- 

 

(1.23, 36.69) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 Table A2.3 (b). Marginal contrasts of vocalizations between locations. 

 

Contrast df Chi2 P > Chi2 

Location    

(NFLA vs. EVER) 1 2.60 0.11 

(PSSF vs. EVER) 1 0.00 0.96 

Joint 2 3.15 0.21 

 

 

 

 

Table A2.3 (c). Marginal contrasts of vocalizations by location within period. 

 

Contrast df Chi2 P > Chi2 

Location@Period    

(NFLA vs EVER) 1 1 3.32 0.07 

(NFLA vs EVER) 2 1 0.70 0.40 

(PSSF vs EVER) 1 1 0.23 0.63 

(PSSF vs EVER) 2 1 0.18 0.67 

Joint 4 4.09 0.39 

 

 

 

Table A2.3 (d). Marginal contrasts of vocalizations by period within each location. 

 

Contrast df Chi2 P > Chi2 

Period@Location    

(2 vs 1) EVER 1 0.00 1.00 

(2 vs 1) NFLA 1 1.38 0.24 

(2 vs 1) PSSF 1 1.97 0.16 

Joint 3 3.33 0.34 



 

 
Figure A2.3. Marginal predicted mean probability that birds gave any calls (1 = called, 0 = did 

not call) during testing, with 95% confidence intervals, for nuthatches tested at the 

three locations and in each of the two time periods. See text for location 

abbreviations.  

 


	Title
	Abstract
	Introduction
	Research design

	Methods
	Study species
	Study sites
	Capture methods
	Novel-environment evaluations
	Quantifying behavioral activities
	Statistical analyses

	Results
	Descriptives and bias tests
	Exploratory activities
	Other activities

	Discussion
	Slow-exploring everglades nuthatches
	Potential biases
	Underlying causes

	Conclusion
	Responses to this article
	Acknowledgments
	Literature cited
	Figure1
	Figure2
	Table1
	Table2
	Table3
	Table4
	Table5
	Table6
	Table7
	Appendix 1
	Appendix 2

